data_2modaities_2readers_3confidence: data: 2 readers, 2 modalities and 3 confideneces

Description Details Author(s) References See Also Examples

Description

Example data-set which has small samples.

Details

the number of modalities, denoted by M.

M = 2 modalities

the number of Confidences, denoted by C.

C = 3 Confidence levels

the number of readers, denoted by Q.

Q = 2 readers

Contents

NL = 142 (Number of Lesions)

NI = 57 (Number of Images)#'

Contents:

Multiple readers and multiple modalities case, i.e., MRMC case

ModalityID ReaderID Confidence levels No. of false alarms No. of hits.
m q c f h
-------------- ------------- ------------------------ ------------------- ----------------
1 1 3 20 111
1 1 2 29 55
1 1 1 21 22
1 2 3 6 100
1 2 2 15 44
1 2 1 22 11
2 1 3 6 66
2 1 2 24 55
2 1 1 23 1
2 2 3 5 66
2 2 2 30 55
2 2 1 40 44

Author(s)

Issei Tsunoda tsunoda.issei1111@gmail.com

References

Example data of Jafroc software

See Also

Not dataList.Chakra.Web But dataList.Chakra.Web.orderd Not dd

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#========================================================================================
#                        Show data by table
#========================================================================================



                        viewdata(data_of_36_readers_and_a_single_modality)


plot_FPF_and_TPF_from_a_dataset(data_of_36_readers_and_a_single_modality)

####1#### ####2#### ####3#### ####4#### ####5#### ####6#### ####7#### ####8#### ####9####
#========================================================================================
#                       make this data from functions in this package
#========================================================================================



v  <- v_truth_creator_for_many_readers_MRMC_data(M=1,Q=36)
m  <- mu_truth_creator_for_many_readers_MRMC_data(M=1,Q=36)
d  <- create_dataList_MRMC(mu.truth = m,v.truth = v)


# The last object named d is the desired dataset.

BayesianFROC documentation built on Jan. 23, 2022, 9:06 a.m.