ddd: Multiple reader and Multiple modality data

Description Details Author(s) References Examples

Description

This is a subset of dd

This dataset has a different dimesion with respect to each moality, reader and confidence level. To confirm my program is correct, the author made this.

In the following I emphasis that this data set has distinct C,M,Q:

ddd$C

5 Confidence levels

ddd$M

3 modalities

ddd$Q

4 readers

So, all number, i.e. M,C,Q is different each other and this is the reason why the author made this dataset.

Details

The WAIC is finite which surprizes me, because a dataset dd has no finite WAIC. Why??

I forgot when I wrote this and what model was fitted to this data, so I am not sure the current model has finite WAIC.

Revised 2019 Nov. 21

Contents of dd

NL = 142 (Number of Lesions)

NI = 199 (Number of Images)

—————————————————————————————————

ModalityID ReaderID Confidence levels No. of false alarms No. of hits.
m q c f h
-------------- ------------- ------------------------ ------------------- ----------------
1 1 5 0 50
1 1 4 4 30
1 1 3 20 11
1 1 2 29 5
1 1 1 21 1
1 2 5 0 15
1 2 4 0 29
1 2 3 6 29
1 2 2 15 1
1 2 1 22 0
1 3 5 1 39
1 3 4 15 31
1 3 3 18 8
1 3 2 31 10
1 3 1 19 3
1 4 5 1 10
1 4 4 2 8
1 4 3 4 25
1 4 2 16 45
1 4 1 17 14
2 1 5 1 52
2 1 4 1 25
2 1 3 21 13
2 1 2 24 4
2 1 1 23 1
2 2 5 1 27
2 2 4 1 28
2 2 3 5 29
2 2 2 30 1
2 2 1 40 0
2 3 5 2 53
2 3 4 19 29
2 3 3 31 13
2 3 2 56 2
2 3 1 42 4
2 4 5 2 9
2 4 4 0 16
2 4 3 2 22
2 4 2 30 43
2 4 1 32 14
3 1 5 1 43
3 1 4 7 29
3 1 3 13 11
3 1 2 28 6
3 1 1 19 0
3 2 5 0 18
3 2 4 1 29
3 2 3 7 21
3 2 2 7 0
3 2 1 31 0
3 3 5 7 43
3 3 4 15 29
3 3 3 28 6
3 3 2 41 7
3 3 1 9 1
3 4 5 0 10
3 4 4 2 14
3 4 3 5 19
3 4 2 24 32
3 4 1 31 23

—————————————————————————————————

Author(s)

Issei Tsunoda tsunoda.issei1111@gmail.com

References

Nothing in 2018

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
####1#### ####2#### ####3#### ####4#### ####5#### ####6#### ####7#### ####8#### ####9####
#========================================================================================
#              make an object ddd from an object dd
#========================================================================================



           ddd  <-  data.frame(m=dd$m,q=dd$q,c=dd$c,h=dd$h,f=dd$f)

           dddd <-  ddd[ddd$m <4,]  #  Reduce the dataset ddd, i.e., dd

ddd <- list(
           m=dddd$m,
           q=dddd$q,
           c=dddd$c,
           h=dddd$h,
           f=dddd$f,
           NL=142,
           NI=199, # 2020 April 6
           C=max(dddd$c),
           M=max(dddd$m),
           Q=max(dddd$q)
        )

BayesianFROC documentation built on Jan. 23, 2022, 9:06 a.m.