Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(BayesianMCPMod)
library(clinDR)
library(dplyr)
set.seed(7015)
## ----Historical Data----------------------------------------------------------
data("metaData")
testdata <- as.data.frame(metaData)
dataset <- filter(testdata, bname == "BRINTELLIX")
histcontrol <- filter(dataset, dose == 0, primtime == 8, indication == "MAJOR DEPRESSIVE DISORDER")
hist_data <- data.frame(
trial = histcontrol$nctno,
est = histcontrol$rslt,
se = histcontrol$se,
sd = histcontrol$sd,
n = histcontrol$sampsize)
sd_tot <- with(hist_data, sum(sd * n) / sum(n))
## ----Setting Prior without execution, eval = FALSE----------------------------
# dose_levels <- c(0, 2.5, 5, 10, 20)
#
# prior_list <- getPriorList(
# hist_data = hist_data,
# dose_levels = dose_levels,
# robust_weight = 0.3)
## ----Setting Prior, echo = FALSE----------------------------------------------
dose_levels <- c(0, 2.5, 5, 10, 20)
prior_list <- list(
Ctr = RBesT::mixnorm(
comp1 = c(w = 0.446213, m = -12.774661, s = 1.393130),
comp1 = c(w = 0.253787, m = 3.148116, s = 3.148116),
robust = c(w = 0.3, m = 9.425139, s = 9.425139),
sigma = sd_tot),
DG_1 = RBesT::mixnorm(
comp1 = c(w = 1, m = -12.816875, n = 1),
sigma = sd_tot,
param = "mn"),
DG_2 = RBesT::mixnorm(
comp1 = c(w = 1, m = -12.816875, n = 1),
sigma = sd_tot,
param = "mn"),
DG_3 = RBesT::mixnorm(
comp1 = c(w = 1, m = -12.816875, n = 1),
sigma = sd_tot,
param = "mn"),
DG_4 = RBesT::mixnorm(
comp1 = c(w = 1, m = -12.816875, n = 1),
sigma = sd_tot,
param = "mn")
)
## -----------------------------------------------------------------------------
exp <- DoseFinding::guesst(
d = 5,
p = c(0.2),
model = "exponential",
Maxd = max(dose_levels))
emax <- DoseFinding::guesst(
d = 2.5,
p = c(0.9),
model = "emax")
sigemax <- DoseFinding::guesst(
d = c(2.5, 5),
p = c(0.1, 0.6),
model = "sigEmax")
sigemax2 <- DoseFinding::guesst(
d = c(2, 4),
p = c(0.3, 0.8),
model = "sigEmax")
mods <- DoseFinding::Mods(
linear = NULL,
emax = emax,
exponential = exp,
sigEmax = rbind(sigemax, sigemax2),
doses = dose_levels,
maxEff = -3,
placEff = -12.8)
n_patients <- c(60, 80, 80, 80, 80)
## -----------------------------------------------------------------------------
success_probabilities <- assessDesign(
n_patients = n_patients,
mods = mods,
prior_list = prior_list,
sd = sd_tot,
n_sim = 100) # speed up example run-time
success_probabilities
## -----------------------------------------------------------------------------
success_probabilities_uneq <- assessDesign(
n_patients = c(80, 60, 60, 60, 120),
mods = mods,
prior_list = prior_list,
sd = sd_tot,
n_sim = 100) # speed up example run-time
success_probabilities_uneq
## -----------------------------------------------------------------------------
success_probabilities <- assessDesign(
n_patients = c(60, 80, 80, 80, 80),
mods = mods,
prior_list = prior_list,
sd = sd_tot,
dr_means = c(-12, -14, -15, -16, -17),
n_sim = 100) # speed up example run-time
success_probabilities
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.