inverse-wishart | R Documentation |
Density for the inverse Wishart distribution.
dInverseWishart(Sigma, sum.of.squares, nu, logscale = FALSE,
log.det.sumsq = log(det(sum.of.squares)))
InverseWishartPrior(variance.guess, variance.guess.weight)
Sigma |
Argument (random variable) for the inverse Wishart distribution. A positive definite matrix. |
nu |
The "degrees of freedom" parameter of the inverse Wishart
distribution. The distribution is only defined for |
sum.of.squares |
A positive definite matrix. Typically this is the sum of squares that is the sufficient statistic for the inverse Wishart distribution. |
logscale |
Logical. If |
log.det.sumsq |
The log determinant of |
variance.guess |
A prior guess at the value of the variance matrix the prior is modeling. |
variance.guess.weight |
A positive scalar indicating the number
of observations worth of weight to place on |
The inverse Wishart distribution has density function
\frac{|Sigma|^{-\frac{\nu + p + 1}{2}} \exp(-tr(\Sigma^{-1}S) / 2)}{
2^{\frac{\nu p}{2}}|\Sigma|^{\frac{\nu}{2}}\Gamma_p(\nu / 2)}%
dInverseWishart
returns the scalar density (or log density) at
the specified value. This function is not vectorized, so only one
random variable (matrix) can be evaluated at a time.
InverseWishartPrior
returns a list that encodes the parameters
of the distribution in a format expected by underlying C++ code.
Steven L. Scott steve.the.bayesian@gmail.com
dWishart
,
rWishart
,
NormalInverseWishartPrior
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.