Nothing
CBPS.3Treat<-function(treat, X, method, k, XprimeX.inv, bal.only, iterations, standardize, twostep, sample.weights, ...)
{
probs.min<-1e-6
no.treats<-length(levels(as.factor(treat)))
treat.names<-levels(as.factor(treat))
T1<-as.numeric(treat==treat.names[1])
T2<-as.numeric(treat==treat.names[2])
T3<-as.numeric(treat==treat.names[3])
sample.weights<-sample.weights/mean(sample.weights)
wtX <- sample.weights*X
XprimeX.inv<-ginv(t(sample.weights^.5*X)%*%(sample.weights^.5*X))
##The gmm objective function--given a guess of beta, constructs the GMM J statistic.
gmm.func<-function(beta.curr,X.gmm=X,invV=NULL){
##Designate a few objects in the function.
beta.curr<-matrix(beta.curr,k,no.treats-1)
X<-as.matrix(X.gmm)
##Designate sample size, number of treated and control observations,
##theta.curr, which are used to generate probabilities.
##Trim probabilities, and generate weights.
theta.curr<-X%*%beta.curr
baseline.prob<-apply(theta.curr,1,function(x) (1+sum(exp(x)))^-1)
probs.curr<-cbind(baseline.prob, exp(theta.curr[,1])*baseline.prob, exp(theta.curr[,2])*baseline.prob)
probs.curr[,1]<-pmax(probs.min,probs.curr[,1])
probs.curr[,2]<-pmax(probs.min,probs.curr[,2])
probs.curr[,3]<-pmax(probs.min,probs.curr[,3])
norms<-apply(probs.curr,1,sum)
probs.curr<-probs.curr/norms
w.curr<-cbind(2*T1/probs.curr[,1] - T2/probs.curr[,2] - T3/probs.curr[,3],
T2/probs.curr[,2] - T3/probs.curr[,3])
##Generate the vector of mean imbalance by weights.
w.curr.del<-1/n*t(wtX)%*%w.curr
w.curr.del<-as.matrix(w.curr.del)
w.curr<-as.matrix(w.curr)
##Generate g-bar, as in the paper.
gbar<-c(1/n*t(wtX)%*%(T2-probs.curr[,2]),
1/n*t(wtX)%*%(T3-probs.curr[,3]),
w.curr.del)
if(is.null(invV))
{
##Generate the covariance matrix used in the GMM estimate.
##Was for the initial version that calculates the analytic variances.
X.1.1<-wtX*(probs.curr[,2]*(1-probs.curr[,2]))
X.1.2<-wtX*(-probs.curr[,2]*probs.curr[,3])
X.1.3<-wtX*-1
X.1.4<-wtX*1
X.2.2<-wtX*(probs.curr[,3]*(1-probs.curr[,3]))
X.2.3<-wtX*-1
X.2.4<-wtX*-1
X.3.3<-wtX*(4*probs.curr[,1]^-1+probs.curr[,2]^-1+probs.curr[,3]^-1)
X.3.4<-wtX*(-probs.curr[,2]^-1+probs.curr[,3]^-1)
X.4.4<-wtX*(probs.curr[,2]^-1+probs.curr[,3]^-1)
V<-1/n*rbind(cbind(t(X.1.1)%*%X,t(X.1.2)%*%X,t(X.1.3)%*%X,t(X.1.4)%*%X),
cbind(t(X.1.2)%*%X,t(X.2.2)%*%X,t(X.2.3)%*%X,t(X.2.4)%*%X),
cbind(t(X.1.3)%*%X,t(X.2.3)%*%X,t(X.3.3)%*%X,t(X.3.4)%*%X),
cbind(t(X.1.4)%*%X,t(X.2.4)%*%X,t(X.3.4)%*%X,t(X.4.4)%*%X))
invV<-ginv(V)
}
##Calculate the GMM loss.
loss1<-as.vector(t(gbar)%*%invV%*%(gbar))
out1<-list("loss"=loss1, "invV"=invV)
out1
}
gmm.loss<-function(x,...) gmm.func(x,...)$loss
##Loss function for balance constraints, returns the squared imbalance along each dimension.
bal.loss<-function(beta.curr){
beta.curr<-matrix(beta.curr,k,no.treats-1)
theta.curr<-X%*%beta.curr
baseline.prob<-apply(theta.curr,1,function(x) (1+sum(exp(x)))^-1)
probs.curr<-cbind(baseline.prob, exp(theta.curr[,1])*baseline.prob, exp(theta.curr[,2])*baseline.prob)
probs.curr[,1]<-pmax(probs.min,probs.curr[,1])
probs.curr[,2]<-pmax(probs.min,probs.curr[,2])
probs.curr[,3]<-pmax(probs.min,probs.curr[,3])
norms<-apply(probs.curr,1,sum)
probs.curr<-probs.curr/norms
w.curr<-cbind(2*T1/probs.curr[,1] - T2/probs.curr[,2] - T3/probs.curr[,3],
T2/probs.curr[,2] - T3/probs.curr[,3])/n
##Generate mean imbalance.
wtXprimew <- t(wtX)%*%(w.curr)
loss1<-sum(diag(t(wtXprimew)%*%XprimeX.inv%*%wtXprimew))
loss1
}
gmm.gradient<-function(beta.curr, X.gmm=X, invV)
{
##Designate a few objects in the function.
beta.curr<-matrix(beta.curr,k,no.treats-1)
X<-as.matrix(X.gmm)
##Designate sample size, number of treated and control observations,
##theta.curr, which are used to generate probabilities.
##Trim probabilities, and generate weights.
theta.curr<-X%*%beta.curr
baseline.prob<-apply(theta.curr,1,function(x) (1+sum(exp(x)))^-1)
probs.curr<-cbind(baseline.prob, exp(theta.curr[,1])*baseline.prob, exp(theta.curr[,2])*baseline.prob)
probs.curr[,1]<-pmax(probs.min,probs.curr[,1])
probs.curr[,2]<-pmax(probs.min,probs.curr[,2])
probs.curr[,3]<-pmax(probs.min,probs.curr[,3])
norms<-apply(probs.curr,1,sum)
probs.curr<-probs.curr/norms
w.curr<-cbind(2*T1/probs.curr[,1] - T2/probs.curr[,2] - T3/probs.curr[,3],
T2/probs.curr[,2] - T3/probs.curr[,3])
##Generate the vector of mean imbalance by weights.
w.curr.del<-1/n*t(wtX)%*%w.curr
w.curr.del<-as.matrix(w.curr.del)
w.curr<-as.matrix(w.curr)
##Generate g-bar, as in the paper.
gbar<-c(1/n*t(wtX)%*%(T2-probs.curr[,2]),
1/n*t(wtX)%*%(T3-probs.curr[,3]),
w.curr.del)
dgbar<-rbind(cbind(1/n*t(-wtX*probs.curr[,2]*(1-probs.curr[,2]))%*%X,
1/n*t(wtX*probs.curr[,2]*probs.curr[,3])%*%X,
1/n*t(wtX*(2*T1*probs.curr[,2]/probs.curr[,1] + T2*(1-probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3]))%*%X,
1/n*t(wtX*(-T2*(1-probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3]))%*%X),
cbind(1/n*t(wtX*probs.curr[,2]*probs.curr[,3])%*%X,
1/n*t(-wtX*probs.curr[,3]*(1-probs.curr[,3]))%*%X,
1/n*t(wtX*(2*T1*probs.curr[,3]/probs.curr[,1] - T2*probs.curr[,3]/probs.curr[,2] + T3*(1-probs.curr[,3])/probs.curr[,3]))%*%X,
1/n*t(wtX*(T2*probs.curr[,3]/probs.curr[,2] + T3*(1-probs.curr[,3])/probs.curr[,3]))%*%X))
out<-2*dgbar%*%invV%*%gbar
out
}
bal.gradient<-function(beta.curr)
{
beta.curr<-matrix(beta.curr,k,no.treats-1)
theta.curr<-X%*%beta.curr
baseline.prob<-apply(theta.curr,1,function(x) (1+sum(exp(x)))^-1)
probs.curr<-cbind(baseline.prob, exp(theta.curr[,1])*baseline.prob, exp(theta.curr[,2])*baseline.prob)
probs.curr[,1]<-pmax(probs.min,probs.curr[,1])
probs.curr[,2]<-pmax(probs.min,probs.curr[,2])
probs.curr[,3]<-pmax(probs.min,probs.curr[,3])
norms<-apply(probs.curr,1,sum)
probs.curr<-probs.curr/norms
w.curr<-cbind(2*T1/probs.curr[,1] - T2/probs.curr[,2] - T3/probs.curr[,3],
T2/probs.curr[,2] - T3/probs.curr[,3])/n
dw.beta1<-cbind(t(wtX*(2*T1*probs.curr[,2]/probs.curr[,1] + T2*(1-probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3])),
t(wtX*(-T2*(1-probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3])))/n
dw.beta2<-cbind(t(wtX*(2*T1*probs.curr[,3]/probs.curr[,1] - T2*probs.curr[,3]/probs.curr[,2] + T3*(1-probs.curr[,3])/probs.curr[,3])),
t(wtX*(T2*probs.curr[,3]/probs.curr[,2] + T3*(1-probs.curr[,3])/probs.curr[,3])))/n
##Generate mean imbalance.
wtXprimew <- t(wtX)%*%(w.curr)
loss1<-diag(t(wtXprimew)%*%XprimeX.inv%*%wtXprimew)
out.1<-2*dw.beta1[,1:n]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,1]) +
2*dw.beta1[,(n+1):(2*n)]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,2])
out.2<-2*dw.beta2[,1:n]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,1]) +
2*dw.beta2[,(n+1):(2*n)]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,2])
out<-c(out.1, out.2)
out
}
n<-length(treat)
##Run multionmial logit
dat.dummy<-data.frame(treat=treat,X)
#Need to generalize for different dimensioned X's
xnam<- colnames(dat.dummy[,-1])
fmla <- as.formula(paste("as.factor(treat) ~ -1 + ", paste(xnam, collapse= "+")))
mnl1<-multinom(fmla, data=dat.dummy, weights = sample.weights, trace=FALSE)
mcoef<-t(coef(mnl1))
mcoef[is.na(mcoef[,1]),1]<-0
mcoef[is.na(mcoef[,2]),2]<-0
probs.mnl<-cbind(1/(1+exp(X%*%mcoef[,1])+exp(X%*%mcoef[,2])),
exp(X%*%mcoef[,1])/(1+exp(X%*%mcoef[,1])+exp(X%*%mcoef[,2])),
exp(X%*%mcoef[,2])/(1+exp(X%*%mcoef[,1])+exp(X%*%mcoef[,2])))
colnames(probs.mnl)<-c("p1","p2","p3")
probs.mnl[,1]<-pmax(probs.min,probs.mnl[,1])
probs.mnl[,2]<-pmax(probs.min,probs.mnl[,2])
probs.mnl[,3]<-pmax(probs.min,probs.mnl[,3])
norms<-apply(probs.mnl,1,sum)
probs.mnl<-probs.mnl/norms
mnl1$fit<-matrix(probs.mnl,nrow=n,ncol=no.treats)
beta.curr<-matrix(mcoef, ncol = 1)
beta.curr[is.na(beta.curr)]<-0
alpha.func<-function(alpha) gmm.loss(beta.curr*alpha)
beta.curr<-beta.curr*optimize(alpha.func,interval=c(.8,1.1))$min
##Generate estimates for balance and CBPSE
gmm.init<-beta.curr
this.invV<-gmm.func(gmm.init)$invV
if (twostep)
{
opt.bal<-optim(gmm.init, bal.loss, control=list("maxit"=iterations), method="BFGS", gr = bal.gradient, hessian=TRUE)
}
else
{
opt.bal<-tryCatch({
optim(gmm.init, bal.loss, control=list("maxit"=iterations), method="BFGS", hessian=TRUE)
},
error = function(err)
{
return(optim(gmm.init, bal.loss, control=list("maxit"=iterations), method="Nelder-Mead", hessian=TRUE))
})
}
beta.bal<-opt.bal$par
if(bal.only) opt1<-opt.bal
if(!bal.only)
{
if (twostep)
{
gmm.glm.init<-optim(gmm.init, gmm.loss, control=list("maxit"=iterations), method="BFGS", hessian=TRUE, gr = gmm.gradient, invV = this.invV)
gmm.bal.init<-optim(beta.bal, gmm.loss, control=list("maxit"=iterations), method="BFGS", hessian=TRUE, gr = gmm.gradient, invV = this.invV)
}
else
{
gmm.glm.init<-tryCatch({
optim(gmm.init,gmm.loss, control=list("maxit"=iterations), method="BFGS", hessian=TRUE)
},
error = function(err)
{
return(optim(gmm.init,gmm.loss, control=list("maxit"=iterations), method="Nelder-Mead", hessian=TRUE))
})
gmm.bal.init<-tryCatch({
optim(beta.bal, gmm.loss, control=list("maxit"=iterations), method="BFGS", hessian=TRUE)
},
error = function(err)
{
return(optim(beta.bal, gmm.loss, control=list("maxit"=iterations), method="Nelder-Mead", hessian=TRUE))
})
}
if(gmm.glm.init$val<gmm.bal.init$val) opt1<-gmm.glm.init else opt1<-gmm.bal.init
}
##Generate probabilities
beta.opt<-matrix(opt1$par,nrow=k,ncol=no.treats-1)
theta.opt<-X%*%beta.opt
baseline.prob<-apply(theta.opt,1,function(x) (1+sum(exp(x)))^-1)
probs.opt<-cbind(baseline.prob, exp(theta.opt[,1])*baseline.prob, exp(theta.opt[,2])*baseline.prob)
probs.opt[,1]<-pmax(probs.min,probs.opt[,1])
probs.opt[,2]<-pmax(probs.min,probs.opt[,2])
probs.opt[,3]<-pmax(probs.min,probs.opt[,3])
norms<-apply(probs.opt,1,sum)
probs.opt<-probs.opt/norms
J.opt<-ifelse(twostep, gmm.func(beta.opt, invV = this.invV)$loss, gmm.func(beta.opt)$loss)
if ((J.opt > gmm.loss(mcoef)) & (bal.loss(beta.opt) > bal.loss(mcoef)))
{
beta.opt<-mcoef
probs.opt<-probs.mnl
J.opt <- gmm.loss(mcoef)
warning("Optimization failed. Results returned are for MLE.")
}
residuals<-cbind(T1-probs.opt[,1],T2-probs.opt[,2],T3-probs.opt[,3])
deviance <- -2*c(sum(T1*log(probs.opt[,1])+T2*log(probs.opt[,2])+T3*log(probs.opt[,3])))
nulldeviance <- -2*c(sum(T1*log(mean(T1))+T2*log(mean(T2))+T3*log(mean(T3))))
##Generate weights
norm1<-norm2<-norm3<-1
if (standardize)
{
norm1<-sum(T1*sample.weights/probs.opt[,1])
norm2<-sum(T2*sample.weights/probs.opt[,2])
norm3<-sum(T3*sample.weights/probs.opt[,3])
}
w.opt<-T1/probs.opt[,1]/norm1 + T2/probs.opt[,2]/norm2 + T3/probs.opt[,3]/norm3
W<-gmm.func(beta.opt)$invV
XG.1.1<-t(-wtX*probs.opt[,2]*(1-probs.opt[,2]))%*%X
XG.1.2<-t(wtX*probs.opt[,2]*probs.opt[,3])%*%X
XG.1.3<-t(wtX*(2*T1*probs.opt[,2]/probs.opt[,1] + T2*(1-probs.opt[,2])/probs.opt[,2] - T3*probs.opt[,2]/probs.opt[,3]))%*%X
XG.1.4<-t(wtX*(-T2*(1-probs.opt[,2])/probs.opt[,2] - T3*probs.opt[,2]/probs.opt[,3]))%*%X
XG.2.1<-t(wtX*probs.opt[,2]*probs.opt[,3])%*%X
XG.2.2<-t(-wtX*probs.opt[,3]*(1-probs.opt[,3]))%*%X
XG.2.3<-t(wtX*(2*T1*probs.opt[,3]/probs.opt[,1] - T2*probs.opt[,3]/probs.opt[,2] + T3*(1-probs.opt[,3])/probs.opt[,3]))%*%X
XG.2.4<-t(wtX*(T2*probs.opt[,3]/probs.opt[,2] + T3*(1-probs.opt[,3])/probs.opt[,3]))%*%X
G<-1/n*rbind(cbind(XG.1.1,XG.1.2,XG.1.3,XG.1.4),cbind(XG.2.1,XG.2.2,XG.2.3,XG.2.4))
XW.1<-X*(T2-probs.opt[,2])*sample.weights^.5
XW.2<-X*(T3-probs.opt[,3])*sample.weights^.5
XW.3<-X*(2*T1/probs.opt[,1] - T2/probs.opt[,2] - T3/probs.opt[,3])*sample.weights^.5
XW.4<-X*(T2/probs.opt[,2] - T3/probs.opt[,3])*sample.weights^.5
W1<-rbind(t(XW.1),t(XW.2),t(XW.3),t(XW.4))
Omega<-1/n*(W1%*%t(W1))
GWGinvGW <- ginv(G%*%W%*%t(G))%*%G%*%W
vcov <- GWGinvGW%*%Omega%*%t(GWGinvGW)
colnames(probs.opt)<-treat.names
class(beta.opt) <- "coef"
output<-list("coefficients"=beta.opt,"fitted.values"=probs.opt,"linear.predictor" = theta.opt,
"deviance"=deviance,"weights"=w.opt*sample.weights,
"y"=treat,"x"=X,"converged"=opt1$conv,"J"=J.opt,"var"=vcov,
"mle.J"=ifelse(twostep, gmm.func(mcoef, invV = this.invV)$loss, gmm.loss(mcoef)))
class(output)<- c("CBPS")
output
}
CBPS.4Treat<-function(treat, X, method, k, XprimeX.inv, bal.only, iterations, standardize, twostep, sample.weights, ...)
{
probs.min<-1e-6
no.treats<-length(levels(as.factor(treat)))
treat.names<-levels(as.factor(treat))
T1<-as.numeric(treat==treat.names[1])
T2<-as.numeric(treat==treat.names[2])
T3<-as.numeric(treat==treat.names[3])
T4<-as.numeric(treat==treat.names[4])
sample.weights<-sample.weights/mean(sample.weights)
wtX <- sample.weights*X
XprimeX.inv<-ginv(t(sample.weights^.5*X)%*%(sample.weights^.5*X))
##The gmm objective function--given a guess of beta, constructs the GMM J statistic.
gmm.func<-function(beta.curr,X.gmm=X,invV=NULL){
##Designate a few objects in the function.
beta.curr<-matrix(beta.curr,k,no.treats-1)
X<-as.matrix(X.gmm)
##Designate sample size, number of treated and control observations,
##theta.curr, which are used to generate probabilities.
##Trim probabilities, and generate weights.
theta.curr<-X%*%beta.curr
baseline.prob<-apply(theta.curr,1,function(x) (1+sum(exp(x)))^-1)
probs.curr<-cbind(baseline.prob, exp(theta.curr[,1])*baseline.prob, exp(theta.curr[,2])*baseline.prob, exp(theta.curr[,3])*baseline.prob)
probs.curr[,1]<-pmax(probs.min,probs.curr[,1])
probs.curr[,2]<-pmax(probs.min,probs.curr[,2])
probs.curr[,3]<-pmax(probs.min,probs.curr[,3])
probs.curr[,4]<-pmax(probs.min,probs.curr[,4])
norms<-apply(probs.curr,1,sum)
probs.curr<-probs.curr/norms
w.curr<-cbind(T1/probs.curr[,1] + T2/probs.curr[,2] - T3/probs.curr[,3] - T4/probs.curr[,4],
T1/probs.curr[,1] - T2/probs.curr[,2] - T3/probs.curr[,3] + T4/probs.curr[,4],
-T1/probs.curr[,1] + T2/probs.curr[,2] - T3/probs.curr[,3] + T4/probs.curr[,4])
##Generate the vector of mean imbalance by weights.
w.curr.del<-1/n*t(wtX)%*%w.curr
w.curr.del<-as.matrix(w.curr.del)
w.curr<-as.matrix(w.curr)
##Generate g-bar, as in the paper.
gbar<-c(1/n*t(wtX)%*%(T2-probs.curr[,2]),
1/n*t(wtX)%*%(T3-probs.curr[,3]),
1/n*t(wtX)%*%(T4-probs.curr[,4]),
w.curr.del)
if(is.null(invV))
{
##Generate the covariance matrix used in the GMM estimate.
##Was for the initial version that calculates the analytic variances.
X.1.1<-wtX*(probs.curr[,2]*(1-probs.curr[,2]))
X.1.2<-wtX*(-probs.curr[,2]*probs.curr[,3])
X.1.3<-wtX*(-probs.curr[,2]*probs.curr[,4])
X.1.4<-wtX
X.1.5<-wtX*(-1)
X.1.6<-wtX
X.2.2<-wtX*(probs.curr[,3]*(1-probs.curr[,3]))
X.2.3<-wtX*(-probs.curr[,3]*probs.curr[,4])
X.2.4<-wtX*(-1)
X.2.5<-wtX*(-1)
X.2.6<-wtX*(-1)
X.3.3<-wtX*(probs.curr[,4]*(1-probs.curr[,4]))
X.3.4<-wtX*(-1)
X.3.5<-wtX
X.3.6<-wtX
X.4.4<-wtX*(probs.curr[,1]^-1+probs.curr[,2]^-1+probs.curr[,3]^-1+probs.curr[,4]^-1)
X.4.5<-wtX*(probs.curr[,1]^-1-probs.curr[,2]^-1+probs.curr[,3]^-1-probs.curr[,4]^-1)
X.4.6<-wtX*(-probs.curr[,1]^-1+probs.curr[,2]^-1+probs.curr[,3]^-1-probs.curr[,4]^-1)
X.5.5<-X.4.4
X.5.6<-wtX*(-probs.curr[,1]^-1-probs.curr[,2]^-1+probs.curr[,3]^-1+probs.curr[,4]^-1)
X.6.6<-X.4.4
V<-1/n*rbind(cbind(t(X.1.1)%*%X,t(X.1.2)%*%X,t(X.1.3)%*%X,t(X.1.4)%*%X,t(X.1.5)%*%X,t(X.1.6)%*%X),
cbind(t(X.1.2)%*%X,t(X.2.2)%*%X,t(X.2.3)%*%X,t(X.2.4)%*%X,t(X.2.5)%*%X,t(X.2.6)%*%X),
cbind(t(X.1.3)%*%X,t(X.2.3)%*%X,t(X.3.3)%*%X,t(X.3.4)%*%X,t(X.3.5)%*%X,t(X.3.6)%*%X),
cbind(t(X.1.4)%*%X,t(X.2.4)%*%X,t(X.3.4)%*%X,t(X.4.4)%*%X,t(X.4.5)%*%X,t(X.4.6)%*%X),
cbind(t(X.1.5)%*%X,t(X.2.5)%*%X,t(X.3.5)%*%X,t(X.4.5)%*%X,t(X.5.5)%*%X,t(X.5.6)%*%X),
cbind(t(X.1.6)%*%X,t(X.2.6)%*%X,t(X.3.6)%*%X,t(X.4.6)%*%X,t(X.5.6)%*%X,t(X.6.6)%*%X))
invV<-ginv(V)
}
##Calculate the GMM loss.
loss1<-as.vector(t(gbar)%*%invV%*%(gbar))
out1<-list("loss"=loss1, "invV"=invV)
out1
}
gmm.loss<-function(x,...) gmm.func(x,...)$loss
##Loss function for balance constraints, returns the squared imbalance along each dimension.
bal.loss<-function(beta.curr){
beta.curr<-matrix(beta.curr,k,no.treats-1)
theta.curr<-X%*%beta.curr
baseline.prob<-apply(theta.curr,1,function(x) (1+sum(exp(x)))^-1)
probs.curr<-cbind(baseline.prob, exp(theta.curr[,1])*baseline.prob, exp(theta.curr[,2])*baseline.prob, exp(theta.curr[,3])*baseline.prob)
probs.curr[,1]<-pmax(probs.min,probs.curr[,1])
probs.curr[,2]<-pmax(probs.min,probs.curr[,2])
probs.curr[,3]<-pmax(probs.min,probs.curr[,3])
probs.curr[,4]<-pmax(probs.min,probs.curr[,4])
norms<-apply(probs.curr,1,sum)
probs.curr<-probs.curr/norms
w.curr<-cbind(T1/probs.curr[,1] + T2/probs.curr[,2] - T3/probs.curr[,3] - T4/probs.curr[,4],
T1/probs.curr[,1] - T2/probs.curr[,2] - T3/probs.curr[,3] + T4/probs.curr[,4],
-T1/probs.curr[,1] + T2/probs.curr[,2] - T3/probs.curr[,3] + T4/probs.curr[,4])/n
##Generate mean imbalance.
wtXprimew <- t(sample.weights*X)%*%(w.curr)
loss1<-sum(diag(t(wtXprimew)%*%XprimeX.inv%*%wtXprimew))
loss1
}
gmm.gradient<-function(beta.curr, X.gmm=X, invV)
{
##Designate a few objects in the function.
beta.curr<-matrix(beta.curr,k,no.treats-1)
X<-as.matrix(X.gmm)
##Designate sample size, number of treated and control observations,
##theta.curr, which are used to generate probabilities.
##Trim probabilities, and generate weights.
theta.curr<-X%*%beta.curr
baseline.prob<-apply(theta.curr,1,function(x) (1+sum(exp(x)))^-1)
probs.curr<-cbind(baseline.prob, exp(theta.curr[,1])*baseline.prob, exp(theta.curr[,2])*baseline.prob, exp(theta.curr[,3])*baseline.prob)
probs.curr[,1]<-pmax(probs.min,probs.curr[,1])
probs.curr[,2]<-pmax(probs.min,probs.curr[,2])
probs.curr[,3]<-pmax(probs.min,probs.curr[,3])
probs.curr[,4]<-pmax(probs.min,probs.curr[,4])
norms<-apply(probs.curr,1,sum)
probs.curr<-probs.curr/norms
w.curr<-cbind(T1/probs.curr[,1] + T2/probs.curr[,2] - T3/probs.curr[,3] - T4/probs.curr[,4],
T1/probs.curr[,1] - T2/probs.curr[,2] - T3/probs.curr[,3] + T4/probs.curr[,4],
-T1/probs.curr[,1] + T2/probs.curr[,2] - T3/probs.curr[,3] + T4/probs.curr[,4])
##Generate the vector of mean imbalance by weights.
w.curr.del<-1/n*t(wtX)%*%w.curr
w.curr.del<-as.matrix(w.curr.del)
w.curr<-as.matrix(w.curr)
##Generate g-bar, as in the paper.
gbar<-c(1/n*t(wtX)%*%(T2-probs.curr[,2]),
1/n*t(wtX)%*%(T3-probs.curr[,3]),
1/n*t(wtX)%*%(T4-probs.curr[,4]),
w.curr.del)
dgbar<-rbind(cbind(1/n*t(-wtX*probs.curr[,2]*(1-probs.curr[,2]))%*%X,
1/n*t(wtX*probs.curr[,2]*probs.curr[,3])%*%X,
1/n*t(wtX*probs.curr[,2]*probs.curr[,4])%*%X,
1/n*t(wtX*(T1*probs.curr[,2]/probs.curr[,1] - T2*(1 - probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3] - T4*probs.curr[,2]/probs.curr[,4]))%*%X,
1/n*t(wtX*(T1*probs.curr[,2]/probs.curr[,1] + T2*(1 - probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3] + T4*probs.curr[,2]/probs.curr[,4]))%*%X,
1/n*t(wtX*(-T1*probs.curr[,2]/probs.curr[,1] - T2*(1 - probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3] + T4*probs.curr[,2]/probs.curr[,4]))%*%X
),
cbind(1/n*t(wtX*probs.curr[,2]*probs.curr[,3])%*%X,
1/n*t(-wtX*probs.curr[,3]*(1-probs.curr[,3]))%*%X,
1/n*t(wtX*probs.curr[,3]*probs.curr[,4])%*%X,
1/n*t(wtX*(T1*probs.curr[,3]/probs.curr[,1] + T2*probs.curr[,3]/probs.curr[,2] + T3*(1 - probs.curr[,3])/probs.curr[,3] - T4*probs.curr[,3]/probs.curr[,4]))%*%X,
1/n*t(wtX*(T1*probs.curr[,3]/probs.curr[,1] - T2*probs.curr[,3]/probs.curr[,2] + T3*(1 - probs.curr[,3])/probs.curr[,3] + T4*probs.curr[,3]/probs.curr[,4]))%*%X,
1/n*t(wtX*(-T1*probs.curr[,3]/probs.curr[,1] + T2*probs.curr[,3]/probs.curr[,2] + T3*(1 - probs.curr[,3])/probs.curr[,3] + T4*probs.curr[,3]/probs.curr[,4]))%*%X
),
cbind(1/n*t(wtX*probs.curr[,2]*probs.curr[,4])%*%X,
1/n*t(wtX*probs.curr[,3]*probs.curr[,4])%*%X,
1/n*t(-wtX*probs.curr[,4]*(1-probs.curr[,4]))%*%X,
1/n*t(wtX*(T1*probs.curr[,4]/probs.curr[,1] + T2*probs.curr[,4]/probs.curr[,2] - T3*probs.curr[,4]/probs.curr[,3] + T4*(1 - probs.curr[,4])/probs.curr[,4]))%*%X,
1/n*t(wtX*(T1*probs.curr[,4]/probs.curr[,1] - T2*probs.curr[,4]/probs.curr[,2] - T3*probs.curr[,4]/probs.curr[,3] - T4*(1 - probs.curr[,4])/probs.curr[,4]))%*%X,
1/n*t(wtX*(-T1*probs.curr[,4]/probs.curr[,1] + T2*probs.curr[,4]/probs.curr[,2] - T3*probs.curr[,4]/probs.curr[,3] - T4*(1 - probs.curr[,4])/probs.curr[,4]))%*%X
))
out<-2*dgbar%*%invV%*%gbar
out
}
bal.gradient<-function(beta.curr)
{
beta.curr<-matrix(beta.curr,k,no.treats-1)
theta.curr<-X%*%beta.curr
baseline.prob<-apply(theta.curr,1,function(x) (1+sum(exp(x)))^-1)
probs.curr<-cbind(baseline.prob, exp(theta.curr[,1])*baseline.prob, exp(theta.curr[,2])*baseline.prob, exp(theta.curr[,3])*baseline.prob)
probs.curr[,1]<-pmax(probs.min,probs.curr[,1])
probs.curr[,2]<-pmax(probs.min,probs.curr[,2])
probs.curr[,3]<-pmax(probs.min,probs.curr[,3])
probs.curr[,4]<-pmax(probs.min,probs.curr[,4])
norms<-apply(probs.curr,1,sum)
probs.curr<-probs.curr/norms
w.curr<-cbind(T1/probs.curr[,1] + T2/probs.curr[,2] - T3/probs.curr[,3] - T4/probs.curr[,4],
T1/probs.curr[,1] - T2/probs.curr[,2] - T3/probs.curr[,3] + T4/probs.curr[,4],
-T1/probs.curr[,1] + T2/probs.curr[,2] - T3/probs.curr[,3] + T4/probs.curr[,4])/n
dw.beta1<-cbind(t(X*(T1*probs.curr[,2]/probs.curr[,1] - T2*(1 - probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3] - T4*probs.curr[,2]/probs.curr[,4])),
t(X*(T1*probs.curr[,2]/probs.curr[,1] + T2*(1 - probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3] + T4*probs.curr[,2]/probs.curr[,4])),
t(X*(-T1*probs.curr[,2]/probs.curr[,1] - T2*(1 - probs.curr[,2])/probs.curr[,2] - T3*probs.curr[,2]/probs.curr[,3] + T4*probs.curr[,2]/probs.curr[,4])))/n
dw.beta2<-cbind(t(X*(T1*probs.curr[,3]/probs.curr[,1] + T2*probs.curr[,3]/probs.curr[,2] + T3*(1 - probs.curr[,3])/probs.curr[,3] - T4*probs.curr[,3]/probs.curr[,4])),
t(X*(T1*probs.curr[,3]/probs.curr[,1] - T2*probs.curr[,3]/probs.curr[,2] + T3*(1 - probs.curr[,3])/probs.curr[,3] + T4*probs.curr[,3]/probs.curr[,4])),
t(X*(-T1*probs.curr[,3]/probs.curr[,1] + T2*probs.curr[,3]/probs.curr[,2] + T3*(1 - probs.curr[,3])/probs.curr[,3] + T4*probs.curr[,3]/probs.curr[,4])))/n
dw.beta3<-cbind(t(X*(T1*probs.curr[,4]/probs.curr[,1] + T2*probs.curr[,4]/probs.curr[,2] - T3*probs.curr[,4]/probs.curr[,3] + T4*(1 - probs.curr[,4])/probs.curr[,4])),
t(X*(T1*probs.curr[,4]/probs.curr[,1] - T2*probs.curr[,4]/probs.curr[,2] - T3*probs.curr[,4]/probs.curr[,3] - T4*(1 - probs.curr[,4])/probs.curr[,4])),
t(X*(-T1*probs.curr[,4]/probs.curr[,1] + T2*probs.curr[,4]/probs.curr[,2] - T3*probs.curr[,4]/probs.curr[,3] - T4*(1 - probs.curr[,4])/probs.curr[,4])))/n
Xprimew <- t(wtX)%*%w.curr
loss1<-diag(t(Xprimew)%*%XprimeX.inv%*%Xprimew)
out.1<-2*dw.beta1[,1:n]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,1]) +
2*dw.beta1[,(n+1):(2*n)]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,2]) +
2*dw.beta1[,(2*n+1):(3*n)]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,3])
out.2<-2*dw.beta2[,1:n]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,1]) +
2*dw.beta2[,(n+1):(2*n)]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,2]) +
2*dw.beta2[,(2*n+1):(3*n)]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,3])
out.3<-2*dw.beta3[,1:n]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,1]) +
2*dw.beta3[,(n+1):(2*n)]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,2]) +
2*dw.beta3[,(2*n+1):(3*n)]%*%(wtX)%*%XprimeX.inv%*%t(wtX)%*%(w.curr[,3])
out<-c(out.1, out.2, out.3)
out
}
n<-length(treat)
##Run multionmial logit
dat.dummy<-data.frame(treat=treat,X)
#Need to generalize for different dimensioned X's
xnam<- colnames(dat.dummy[,-1])
fmla <- as.formula(paste("as.factor(treat) ~ -1 + ", paste(xnam, collapse= "+")))
mnl1<-multinom(fmla, data=dat.dummy,trace=FALSE,weights=sample.weights)
mcoef<-t(coef(mnl1))
mcoef[is.na(mcoef[,1]),1]<-0
mcoef[is.na(mcoef[,2]),2]<-0
mcoef[is.na(mcoef[,3]),3]<-0
probs.mnl<-cbind(1/(1+exp(X%*%mcoef[,1])+exp(X%*%mcoef[,2])+exp(X%*%mcoef[,3])),
exp(X%*%mcoef[,1])/(1+exp(X%*%mcoef[,1])+exp(X%*%mcoef[,2])+exp(X%*%mcoef[,3])),
exp(X%*%mcoef[,2])/(1+exp(X%*%mcoef[,1])+exp(X%*%mcoef[,2])+exp(X%*%mcoef[,3])),
exp(X%*%mcoef[,3])/(1+exp(X%*%mcoef[,1])+exp(X%*%mcoef[,2])+exp(X%*%mcoef[,3])))
colnames(probs.mnl)<-c("p1","p2","p3","p4")
probs.mnl[,1]<-pmax(probs.min,probs.mnl[,1])
probs.mnl[,2]<-pmax(probs.min,probs.mnl[,2])
probs.mnl[,3]<-pmax(probs.min,probs.mnl[,3])
probs.mnl[,4]<-pmax(probs.min,probs.mnl[,4])
norms<-apply(probs.mnl,1,sum)
probs.mnl<-probs.mnl/norms
mnl1$fit<-matrix(probs.mnl,nrow=n,ncol=no.treats)
beta.curr<-matrix(mcoef, ncol = 1)
beta.curr[is.na(beta.curr)]<-0
alpha.func<-function(alpha) gmm.loss(beta.curr*alpha)
beta.curr<-beta.curr*optimize(alpha.func,interval=c(.8,1.1))$min
##Generate estimates for balance and CBPSE
gmm.init<-beta.curr
this.invV<-gmm.func(gmm.init)$invV
if (twostep)
{
opt.bal<-optim(gmm.init, bal.loss, control=list("maxit"=iterations), method="BFGS", gr = bal.gradient, hessian=TRUE)
}
else
{
opt.bal<-tryCatch({
optim(gmm.init, bal.loss, control=list("maxit"=iterations), method="BFGS", hessian=TRUE)
},
error = function(err)
{
return(optim(gmm.init, bal.loss, control=list("maxit"=iterations), method="Nelder-Mead", hessian=TRUE))
})
}
beta.bal<-opt.bal$par
if(bal.only) opt1<-opt.bal
if(twostep)
{
if (gmm.loss(gmm.init) < gmm.loss(beta.bal))
{
this.invV<-gmm.func(gmm.init)$invV
}
else
{
this.invV<-gmm.func(beta.bal)$invV
}
if(bal.only)
{
this.invV<-gmm.func(beta.bal)$invV
}
}
if(!bal.only)
{
if (twostep)
{
gmm.glm.init<-optim(gmm.init, gmm.loss, control=list("maxit"=iterations), method="BFGS", gr = gmm.gradient, hessian=TRUE, invV = this.invV)
gmm.bal.init<-optim(beta.bal, gmm.loss, control=list("maxit"=iterations), method="BFGS", gr = gmm.gradient, hessian=TRUE, invV = this.invV)
}
else
{
gmm.glm.init<-tryCatch({
optim(gmm.init,gmm.loss, control=list("maxit"=iterations), method="BFGS", hessian=TRUE)
},
error = function(err)
{
return(optim(gmm.init,gmm.loss, control=list("maxit"=iterations), method="Nelder-Mead", hessian=TRUE))
})
gmm.bal.init<-tryCatch({
optim(beta.bal, gmm.loss, control=list("maxit"=iterations), method="BFGS", hessian=TRUE)
},
error = function(err)
{
return(optim(beta.bal, gmm.loss, control=list("maxit"=iterations), method="Nelder-Mead", hessian=TRUE))
})
}
if(gmm.glm.init$val<gmm.bal.init$val) opt1<-gmm.glm.init else opt1<-gmm.bal.init
}
##Generate probabilities
beta.opt<-matrix(opt1$par,nrow=k,ncol=no.treats-1)
theta.opt<-X%*%beta.opt
baseline.prob<-apply(theta.opt,1,function(x) (1+sum(exp(x)))^-1)
probs.opt<-cbind(baseline.prob, exp(theta.opt[,1])*baseline.prob, exp(theta.opt[,2])*baseline.prob, exp(theta.opt[,3])*baseline.prob)
probs.opt[,1]<-pmax(probs.min,probs.opt[,1])
probs.opt[,2]<-pmax(probs.min,probs.opt[,2])
probs.opt[,3]<-pmax(probs.min,probs.opt[,3])
probs.opt[,4]<-pmax(probs.min,probs.opt[,4])
norms<-apply(probs.opt,1,sum)
probs.opt<-probs.opt/norms
J.opt<-ifelse(twostep, gmm.func(beta.opt, invV = this.invV)$loss, gmm.func(beta.opt)$loss)
if ((J.opt > gmm.loss(mcoef)) & (bal.loss(beta.opt) > bal.loss(mcoef)))
{
beta.opt<-mcoef
probs.opt<-probs.mnl
J.opt <- gmm.loss(mcoef)
warning("Optimization failed. Results returned are for MLE.")
}
#How are residuals now defined?
residuals<-cbind(T1-probs.opt[,1],T2-probs.opt[,2],T3-probs.opt[,3],T4-probs.opt[,4])
deviance <- -2*c(sum(T1*log(probs.opt[,1])+T2*log(probs.opt[,2])+T3*log(probs.opt[,3])+T4*log(probs.opt[,4])))
nulldeviance <- -2*c(sum(T1*log(mean(T1))+T2*log(mean(T2))+T3*log(mean(T3))+T4*log(mean(T4))))
##Generate weights
norm1<-norm2<-norm3<-norm4<-1
if (standardize)
{
norm1<-sum((sample.weights/probs.opt)[which(T1==1),1])
norm2<-sum((sample.weights/probs.opt)[which(T2==1),2])
norm3<-sum((sample.weights/probs.opt)[which(T3==1),3])
norm4<-sum((sample.weights/probs.opt)[which(T4==1),4])
}
w.opt<-(T1 == 1)/probs.opt[,1]/norm1 + (T2 == 1)/probs.opt[,2]/norm2 + (T3 == 1)/probs.opt[,3]/norm3 + (T4 == 1)/probs.opt[,4]/norm4
W<-gmm.func(beta.opt)$invV
X.G.1.1<-t(-wtX*probs.opt[,2]*(1-probs.opt[,2]))%*%X
X.G.1.2<-t(wtX*probs.opt[,2]*probs.opt[,3])%*%X
X.G.1.3<-t(wtX*probs.opt[,2]*probs.opt[,4])%*%X
X.G.1.4<-t(wtX*probs.opt[,2]*(T1/probs.opt[,1] - T2*(1-probs.opt[,2])/probs.opt[,2]^2 - T3/probs.opt[,3] - T4/probs.opt[,4]))%*%X
X.G.1.5<-t(wtX*probs.opt[,2]*(T1/probs.opt[,1] + T2*(1-probs.opt[,2])/probs.opt[,2]^2 - T3/probs.opt[,3] + T4/probs.opt[,4]))%*%X
X.G.1.6<-t(wtX*probs.opt[,2]*(-T1/probs.opt[,1] - T2*(1-probs.opt[,2])/probs.opt[,2]^2 - T3/probs.opt[,3] + T4/probs.opt[,4]))%*%X
X.G.2.1<-t(wtX*probs.opt[,2]*probs.opt[,3])%*%X
X.G.2.2<-t(-wtX*probs.opt[,3]*(1-probs.opt[,3]))%*%X
X.G.2.3<-t(wtX*probs.opt[,3]*probs.opt[,4])%*%X
X.G.2.4<-t(wtX*probs.opt[,3]*(T1/probs.opt[,1] + T2/probs.opt[,2] + T3*(1-probs.opt[,3])/probs.opt[,3]^2 - T4/probs.opt[,4]))%*%X
X.G.2.5<-t(wtX*probs.opt[,3]*(T1/probs.opt[,1] - T2/probs.opt[,2] + T3*(1-probs.opt[,3])/probs.opt[,3]^2 + T4/probs.opt[,4]))%*%X
X.G.2.6<-t(wtX*probs.opt[,3]*(-T1/probs.opt[,1] + T2/probs.opt[,2] + T3*(1-probs.opt[,3])/probs.opt[,3]^2 + T4/probs.opt[,4]))%*%X
X.G.3.1<-t(wtX*probs.opt[,2]*probs.opt[,4])%*%X
X.G.3.2<-t(wtX*probs.opt[,3]*probs.opt[,4])%*%X
X.G.3.3<-t(-wtX*probs.opt[,4]*(1-probs.opt[,4]))%*%X
X.G.3.4<-t(wtX*probs.opt[,4]*(T1/probs.opt[,1] + T2/probs.opt[,2] - T3/probs.opt[,3] + T4*(1-probs.opt[,4])/probs.opt[,4]^2))%*%X
X.G.3.5<-t(wtX*probs.opt[,4]*(T1/probs.opt[,1] - T2/probs.opt[,2] - T3/probs.opt[,3] - T4*(1-probs.opt[,4])/probs.opt[,4]^2))%*%X
X.G.3.6<-t(wtX*probs.opt[,4]*(-T1/probs.opt[,1] + T2/probs.opt[,2] - T3/probs.opt[,3] - T4*(1-probs.opt[,4])/probs.opt[,4]^2))%*%X
XW.1<-X*(T2-probs.opt[,2])*sample.weights^.5
XW.2<-X*(T3-probs.opt[,3])*sample.weights^.5
XW.3<-X*(T4-probs.opt[,4])*sample.weights^.5
XW.4<-X*( T1/probs.opt[,1] + T2/probs.opt[,2] - T3/probs.opt[,3] - T4/probs.opt[,4])*sample.weights^.5
XW.5<-X*( T1/probs.opt[,1] - T2/probs.opt[,2] - T3/probs.opt[,3] + T4/probs.opt[,4])*sample.weights^.5
XW.6<-X*(-T1/probs.opt[,1] + T2/probs.opt[,2] - T3/probs.opt[,3] + T4/probs.opt[,4])*sample.weights^.5
G<-1/n*rbind(cbind(X.G.1.1,X.G.1.2,X.G.1.3,X.G.1.4,X.G.1.5,X.G.1.6),
cbind(X.G.2.1,X.G.2.2,X.G.2.3,X.G.2.4,X.G.2.5,X.G.2.6),
cbind(X.G.3.1,X.G.3.2,X.G.3.3,X.G.3.4,X.G.3.5,X.G.3.6))
W1<-rbind(t(XW.1),t(XW.2),t(XW.3),t(XW.4),t(XW.5),t(XW.6))
Omega<-1/n*(W1%*%t(W1))
GWGinvGW <- ginv(G%*%W%*%t(G))%*%G%*%W
vcov <- GWGinvGW%*%Omega%*%t(GWGinvGW)
colnames(probs.opt)<-treat.names
class(beta.opt) <- "coef"
output<-list("coefficients"=beta.opt,"fitted.values"=probs.opt, "linear.predictor" = theta.opt,
"deviance"=deviance,"weights"=sample.weights*w.opt,
"y"=treat,"x"=X,"converged"=opt1$conv,"J"=J.opt,"var"=vcov,
"mle.J"=ifelse(twostep, gmm.func(mcoef, invV = this.invV)$loss, gmm.loss(mcoef)))
class(output)<- c("CBPS")
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.