Nothing
#' @title Estimating network formation models with degree heterogeneity: the fixed effect approach
#' @param network matrix or list of sub-matrix of social interactions containing 0 and 1, where links are represented by 1
#' @param formula an object of class \link[stats]{formula}: a symbolic description of the model. The `formula` should be as for example \code{~ x1 + x2}
#' where `x1`, `x2` are explanatory variable of links formation. If missing, the model is estimated with fixed effects only.
#' @param data an optional data frame, list or environment (or object coercible by \link[base]{as.data.frame} to a data frame) containing the variables
#' in the model. If not found in data, the variables are taken from \code{environment(formula)}, typically the environment from which `homophily` is called.
#' @param symmetry indicates whether the network model is symmetric (see details).
#' @param fe.way indicates whether it is a one-way or two-way fixed effect model. The expected value is 1 or 2 (see details).
#' @param init (optional) either a list of starting values containing `beta`, an K-dimensional vector of the explanatory variables parameter,
#' `mu` an n-dimensional vector, and `nu` an n-dimensional vector,
#' where K is the number of explanatory variables and n is the number of individuals; or a vector of starting value for `c(beta, mu, nu)`.
#' @param opt.ctr (optional) is a list of `maxit`, `eps_f`, and `eps_g`, which are control parameters used by the solver `optim_lbfgs`, of the package \pkg{RcppNumerical}.
#' @param print Boolean indicating if the estimation progression should be printed.
#' @description
#' `homophily.fe` implements a Logit estimator for network formation model with homophily. The model includes degree heterogeneity using fixed effects (see details).
#' @details
#' Let \eqn{p_{ij}}{Pij} be a probability for a link to go from the individual \eqn{i} to the individual \eqn{j}.
#' This probability is specified for two-way effect models (`fe.way = 2`) as
#' \deqn{p_{ij} = F(\mathbf{x}_{ij}'\beta + \mu_j + \nu_j)}{Pij = F(Xij'*\beta + \mu_i + \nu_j),}
#' where \eqn{F} is the cumulative of the standard logistic distribution. Unobserved degree heterogeneity is captured by
#' \eqn{\mu_i} and \eqn{\nu_j}. The latter are treated as fixed effects (see \code{\link{homophily.re}} for random effect models).
#' As shown by Yan et al. (2019), the estimator of
#' the parameter \eqn{\beta} is biased. A bias correction is then necessary and is not implemented in this version. However
#' the estimator of \eqn{\mu_i} and \eqn{\nu_j} are consistent.\cr
#' For one-way fixed effect models (`fe.way = 1`), \eqn{\nu_j = \mu_j}. For symmetric models, the network is not directed and the
#' fixed effects need to be one way.
#' @seealso \code{\link{homophily.re}}.
#' @references
#' Yan, T., Jiang, B., Fienberg, S. E., & Leng, C. (2019). Statistical inference in a directed network model with covariates. \emph{Journal of the American Statistical Association}, 114(526), 857-868, \doi{https://doi.org/10.1080/01621459.2018.1448829}.
#' @return A list consisting of:
#' \item{model.info}{list of model information, such as the type of fixed effects, whether the model is symmetric,
#' number of observations, etc.}
#' \item{estimate}{maximizer of the log-likelihood.}
#' \item{loglike}{maximized log-likelihood.}
#' \item{optim}{returned value of the optimization solver, which contains details of the optimization. The solver used is `optim_lbfgs` of the
#' package \pkg{RcppNumerical}.}
#' \item{init}{returned list of starting value.}
#' \item{loglike(init)}{log-likelihood at the starting value.}
#' @importFrom stats glm
#' @importFrom stats binomial
#' @importFrom matrixcalc is.symmetric.matrix
#' @examples
#' \donttest{
#' set.seed(1234)
#' M <- 2 # Number of sub-groups
#' nvec <- round(runif(M, 20, 50))
#' beta <- c(.1, -.1)
#' Glist <- list()
#' dX <- matrix(0, 0, 2)
#' mu <- list()
#' nu <- list()
#' Emunu <- runif(M, -1.5, 0) #expectation of mu + nu
#' smu2 <- 0.2
#' snu2 <- 0.2
#' for (m in 1:M) {
#' n <- nvec[m]
#' mum <- rnorm(n, 0.7*Emunu[m], smu2)
#' num <- rnorm(n, 0.3*Emunu[m], snu2)
#' X1 <- rnorm(n, 0, 1)
#' X2 <- rbinom(n, 1, 0.2)
#' Z1 <- matrix(0, n, n)
#' Z2 <- matrix(0, n, n)
#'
#' for (i in 1:n) {
#' for (j in 1:n) {
#' Z1[i, j] <- abs(X1[i] - X1[j])
#' Z2[i, j] <- 1*(X2[i] == X2[j])
#' }
#' }
#'
#' Gm <- 1*((Z1*beta[1] + Z2*beta[2] +
#' kronecker(mum, t(num), "+") + rlogis(n^2)) > 0)
#' diag(Gm) <- 0
#' diag(Z1) <- NA
#' diag(Z2) <- NA
#' Z1 <- Z1[!is.na(Z1)]
#' Z2 <- Z2[!is.na(Z2)]
#'
#' dX <- rbind(dX, cbind(Z1, Z2))
#' Glist[[m]] <- Gm
#' mu[[m]] <- mum
#' nu[[m]] <- num
#' }
#'
#' mu <- unlist(mu)
#' nu <- unlist(nu)
#'
#' out <- homophily.fe(network = Glist, formula = ~ -1 + dX, fe.way = 2)
#' muhat <- out$estimate$mu
#' nuhat <- out$estimate$nu
#' plot(mu, muhat)
#' plot(nu, nuhat)
#' }
#' @export
homophily.fe <- function(network,
formula,
data,
symmetry = FALSE,
fe.way = 1,
init = NULL,
opt.ctr = list(maxit = 1e4, eps_f = 1e-9, eps_g = 1e-9),
print = TRUE){
t1 <- Sys.time()
fe.way <- as.numeric(fe.way[1])
if(symmetry & fe.way == 2) stop("Two side fixed effects are not allowed for symmetric network models.")
stopifnot(fe.way %in% (1:2))
stopifnot(is.null(init) || is.vector(init) || is.list(init))
# Data and dimensions
if (!is.list(network)) {
network <- list(network)
}
M <- length(network)
nvec <- unlist(lapply(network, nrow))
n <- sum(nvec)
Nvec <- NULL
if(symmetry){
Nvec <- nvec*(nvec- 1)/2
stopifnot(sapply(network, is.symmetric.matrix))
network <- frMtoVbyCOLsym(network, nvec, M)
} else {
Nvec <- nvec*(nvec- 1)
# network <- unlist(lapply(network, function(x){diag(x) = NA; x}))
# network <- network[!is.na(network)]
network <- frMtoVbyCOL(network, nvec, M)
}
N <- sum(Nvec)
quiet(gc())
if (sum(!((network == 0) | (network == 1))) != 0) {
stop("Network should contain only 0 and 1.")
}
tmp1 <- NULL
if(symmetry){
tmp1 <- cumsum(unlist(lapply(nvec, function(x) (x - 1):0))) - 1
} else {
tmp1 <- cumsum(unlist(lapply(nvec, function(x) rep(x - 1, x)))) - 1
}
tmp2 <- c(0, tmp1[-n] + 1)
index <- cbind(tmp2, tmp1)
rm(list = c("tmp1", "tmp2"))
quiet(gc())
indexgr <- matrix(c(cumsum(c(0, nvec[-M])), cumsum(nvec) - 1), ncol = 2) #start group, end group
# INDEXgr <- matrix(c(cumsum(c(0, Nvec[-M])), cumsum(Nvec) - 1), ncol = 2)
# Formula to data
dX <- matrix(0, 0, 0)
hasX <- FALSE
if(!missing(formula)){
f.t.data <- formula.to.data(formula, FALSE, NULL, NULL, NULL, data,
type = "network", theta0 = NA)
if(!missing(data)) {
rm("data")
quiet(gc())
}
formula <- f.t.data$formula
dX <- f.t.data$X
if(nrow(dX) != N) stop("The number of observations in X does not match the network.")
rm("f.t.data")
quiet(gc())
hasX <- TRUE
}
coln <- colnames(dX)
if("(Intercept)" %in% coln){stop("Fixed effect model cannot include intercept.")}
K <- length(coln)
nlinks <- sum(network)
out <- list()
if(symmetry){
out <- homophily.LogitFESym(network, M, nvec, n, N, Nvec, index, indexgr,
formula, dX, coln, K, init, nlinks, opt.ctr, hasX, print)
} else {
out <- homophily.LogitFE(network, fe.way, M, nvec, n, N, Nvec, index, indexgr,
formula, dX, coln, K, init, nlinks, opt.ctr, hasX, print)
}
t2 <- Sys.time()
timer <- as.numeric(difftime(t2, t1, units = "secs"))
if(print) {
cat("\n\n")
cat("The program successfully executed \n")
cat("\n")
cat("********SUMMARY******** \n")
cat("n.obs : ", N, "\n")
cat("n.links : ", nlinks, "\n")
cat("K : ", K, "\n")
# Print the processing time
nhours <- floor(timer/3600)
nminutes <- floor((timer-3600*nhours)/60)%%60
nseconds <- timer-3600*nhours-60*nminutes
cat("Elapsed time : ", nhours, " HH ", nminutes, " mm ", round(nseconds), " ss \n \n")
}
out
}
homophily.LogitFE <- function(network, fe.way, M, nvec, n, N, Nvec, index, indexgr,
formula, dX, coln, K, init, nlinks, opt.ctr, hasX, print){
maxit <- opt.ctr$maxit
eps_f <- opt.ctr$eps_f
eps_g <- opt.ctr$eps_g
if(is.null(maxit)){
maxit <- 500
}
if(is.null(eps_f)){
eps_f <- 1e-6
}
if(is.null(eps_g)){
eps_g <- 1e-5
}
#starting value
initllh <- NULL
quiet(gc())
if(is.null(init)){
if(print) cat("starting point searching\n")
beta <- NULL
mu <- NULL
mylogit <- NULL
if(hasX){
mylogit <- glm(network ~ 1 + dX, family = binomial(link = "logit"))
} else {
mylogit <- glm(network ~ 1, family = binomial(link = "logit"))
}
beta <- mylogit$coefficients[-1]
mu <- rep(mylogit$coefficients[1], n)
names(mu) <- NULL
nu <- NULL
if(fe.way == 2){
nu <- rep(0, n - M)
}
init <- c(beta, mu, nu)
initllh <- -0.5*mylogit$deviance
} else {
if(is.list(init)){
beta <- c(init$beta)
mu <- c(init$mu)
nu <- c(init$nu)
if((is.null(beta) || is.null(mu)) & hasX){
if(print) cat("starting point searching\n")
mylogit <- glm(network ~ 1 + dX, family = binomial(link = "logit"))
initllh <- -0.5*mylogit$deviance
if(is.null(mu)){
mu <- rep(mylogit$coefficients[1], n); names(mu) <- NULL
}
if(is.null(beta)){
beta <- mylogit$coefficients[-1]
}
}
if((is.null(beta) || is.null(mu)) & !hasX){
if(print) cat("starting point searching\n")
mylogit <- glm(network ~ 1, family = binomial(link = "logit"))
initllh <- -0.5*mylogit$deviance
if(is.null(mu)){
mu <- rep(mylogit$coefficients[1], n); names(mu) <- NULL
}
}
if(is.null(nu) & (fe.way == 2)){
nu <- rep(0, n - M)
}
stopifnot(length(beta) == K)
stopifnot(length(mu) == n)
if(fe.way == 2){
stopifnot(length(nu) == (n - M))
}
init <- c(beta, mu, nu)
} else if(is.vector(init)){
if(fe.way == 2){
stopifnot(length(init) == (K + 2*n - M))
} else {
stopifnot(length(init) == (K + n))
}
}
}
quiet(gc())
theta <- init
estim <- NULL
quiet(gc())
if(print) {
cat("maximizer searching\n")
}
estim <- NULL
if(fe.way == 2){
estim <- fhomobeta2f(theta, c(network), dX, nvec, index, indexgr, M, maxit, eps_f, eps_g, hasX, print)
} else {
estim <- fhomobeta1f(theta, c(network), dX, nvec, index, indexgr, M, maxit, eps_f, eps_g, hasX, print)
}
# export degree
theta <- c(estim$estimate)
names(theta) <- names(init)
beta <- head(theta, K)
if(hasX){
names(beta) <- coln
}
mu <- theta[(K + 1):(K + n)]
nu <- NULL
if(fe.way == 2){
nu <- tail(theta, n - M)
nu <- unlist(lapply(1:M, function(x) c(nu[(indexgr[x, 1] + 2 - x):(indexgr[x, 2] + 1 - x)], 0)))
}
estim$estimate <- c(estim$estimate)
estim$gradient <- c(estim$gradient)
out <- list("model.info" = list("model" = "logit",
"sym.network" = FALSE,
"fe.way" = fe.way,
"n" = nvec,
"n.obs" = N,
"n.links" = nlinks,
"K" = K),
"estimate" = list(beta = beta, mu = mu, nu = nu),
"loglike" = -estim$value,
"optim" = estim,
"init" = init,
"loglike(init)" = initllh)
class(out) <- "homophily.fe"
out
}
homophily.LogitFESym <- function(network, M, nvec, n, N, Nvec, index, indexgr,
formula, dX, coln, K, init, nlinks, opt.ctr, hasX, print){
maxit <- opt.ctr$maxit
eps_f <- opt.ctr$eps_f
eps_g <- opt.ctr$eps_g
if(is.null(maxit)){
maxit <- 500
}
if(is.null(eps_f)){
eps_f <- 1e-6
}
if(is.null(eps_g)){
eps_g <- 1e-5
}
#starting value
initllh <- NULL
quiet(gc())
if(is.null(init)){
if(print) cat("starting point searching\n")
beta <- NULL
mu <- NULL
mylogit <- NULL
if(hasX){
mylogit <- glm(network ~ 1 + dX, family = binomial(link = "logit"))
} else {
mylogit <- glm(network ~ 1, family = binomial(link = "logit"))
}
beta <- mylogit$coefficients[-1]
mu <- rep(mylogit$coefficients[1], n)
names(mu) <- NULL
init <- c(beta, mu)
initllh <- -0.5*mylogit$deviance
} else {
if(is.list(init)){
beta <- c(init$beta)
mu <- c(init$mu)
if((is.null(beta) || is.null(mu)) & hasX){
if(print) cat("starting point searching\n")
mylogit <- glm(network ~ 1 + dX, family = binomial(link = "logit"))
initllh <- -0.5*mylogit$deviance
if(is.null(mu)){
mu <- rep(mylogit$coefficients[1], n); names(mu) <- NULL
}
if(is.null(beta)){
beta <- mylogit$coefficients[-1]
}
}
if((is.null(beta) || is.null(mu)) & !hasX){
if(print) cat("starting point searching\n")
mylogit <- glm(network ~ 1, family = binomial(link = "logit"))
initllh <- -0.5*mylogit$deviance
if(is.null(mu)){
mu <- rep(mylogit$coefficients[1], n); names(mu) <- NULL
}
}
stopifnot(length(beta) == K)
stopifnot(length(mu) == n)
init <- c(beta, mu)
} else if(is.vector(init)){
stopifnot(length(init) == (K + n))
}
}
quiet(gc())
theta <- init
estim <- NULL
quiet(gc())
if(print) {
cat("maximizer searching\n")
}
estim <- fhomobetasym(theta, c(network), dX, nvec, index, indexgr, M, maxit, eps_f, eps_g, hasX, print)
# export degree
theta <- c(estim$estimate)
names(theta) <- names(init)
beta <- head(theta, K)
if(hasX){
names(beta) <- coln
}
mu <- tail(theta, n)
estim$estimate <- c(estim$estimate)
estim$gradient <- c(estim$gradient)
out <- list("model.info" = list("model" = "logit",
"sym.network" = TRUE,
"n" = nvec,
"n.obs" = N,
"n.links" = nlinks,
"K" = K),
"estimate" = list(beta = beta, mu = mu),
"loglike" = -estim$value,
"optim" = estim,
"init" = init,
"loglike(init)" = initllh)
class(out) <- "homophily.fe"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.