Nothing
test_that("a solution is found in the two-tensor case and Y", {
I = 10
J = 5
K = 3
df = array(rnorm(I*J*K), c(I,J,K))
datasets = list(df, df)
Y = matrix(rnorm(I), nrow=I, ncol=1)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
expect_no_error(acmtfr_opt(Z, Y, 1, max_iter=2))
})
test_that("a solution is found when running LBFGS", {
I = 10
J = 5
K = 3
df = array(rnorm(I*J*K), c(I,J,K))
datasets = list(df, df)
Y = matrix(rnorm(I), nrow=I, ncol=1)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
expect_no_error(acmtfr_opt(Z, Y, 1, max_iter=2, method="L-BFGS"))
})
test_that("the objective is very high if an incorrect solution is found", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(rnorm(I), nrow=I, ncol=1)
result = acmtfr_opt(Z, Y, 2, initialization="random", max_iter = 2)
expect_gt(result$f, 0)
})
test_that("allOutput=TRUE gives a list of expected length", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(rnorm(I), nrow=I, ncol=1)
results = acmtfr_opt(Z, Y, 2, initialization="random", nstart=2, max_iter=2, allOutput=TRUE)
expect_equal(length(results), 2)
})
test_that("the sum of all loss terms is equal to f", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(rnorm(I), nrow=I, ncol=1)
model = acmtfr_opt(Z, Y, 2, initialization="random", nstart=1, max_iter=2)
f = sum(model$f_per_block) + model$f_y + sum(model$f_norms) + sum(model$f_lambda)
expect_equal(model$f, f)
})
test_that("running in parallel works", {
skip_on_cran()
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(rnorm(I), nrow=I, ncol=1)
expect_no_error(acmtfr_opt(Z,Y,2,initialization="random", nstart=2, max_iter=2, numCores=2))
})
test_that("different settings of pi yield a different fit", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(rnorm(I), nrow=I, ncol=1)
model1 = acmtfr_opt(Z,Y,2,initialization="nvec",pi=0.1, nstart=1, max_iter=10)
model2 = acmtfr_opt(Z,Y,2,initialization="nvec",pi=0.9, nstart=1, max_iter=10)
expect_true(model1$f != model2$f)
})
test_that("pi=1 gives post-hoc regression coefficients", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(rnorm(I), nrow=I, ncol=1)
model = acmtfr_opt(Z,Y,2,initialization="nvec",pi=1, nstart=1, max_iter=2)
expect_equal(dim(model$rho), c(2,1))
})
test_that("pi=0 throws no errors", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
expect_no_error(acmtfr_opt(Z,Y,2,initialization="random",pi=0, nstart=1, max_iter=2))
})
test_that("computing too many components is handled gracefully in the solve step", {
set.seed(123)
I = 21
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
expect_no_error(acmtfr_opt(Z,Y,10,initialization="random",pi=0.95, nstart=1, max_iter=2))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.