Nothing
COVAR_CONTINUOUS <- 1
Continuous <- 1
COVAR_CATEGORY <- 2
Category <- 2
COVAR_OCCASION <- 3
Occasion <- 3
CovarTypeNames <- c("Continuous", "Category", "Occasion")
COVAR_NUMBER <- 1
CovarNumber <- 1
COVAR_MEAN <- 2
CovarMean <- 2
COVAR_MEDIAN <- 3
CovarMedian <- 3
CovarEvalNames <- c("Number", "Mean", "Median")
COVAR_BACKWARD <- 1
Backward <- 1
COVAR_INTERPOLATE <- 2
Interpolate <- 2
COVAR_FORWARD <- 3
Forward <- 3
COVAR_EFF_YES <- 1
EnableEffect <- 1
COVAR_EFF_NO <- 2
DisableEffect <- 2
COVAR_EFF_PLUS_ONE <- 3
PlusOneEffect <- 3
#' Class represents an NLME Covariate parameter
#'
#' Class represents an NLME Covariate parameter
#'
#' @param name Name of covariate
#' @param value Covariate value
#' @keywords internal
NlmeCovarItem <- setClass(
"NlmeCovarItem",
slots = c(name = "character",
value = "numeric"),
prototype = list(name = "",
value = 0)
)
setMethod("initialize", "NlmeCovarItem",
function(.Object,
name = "",
value = 0) {
.Object@name <- name
.Object@value <- as.integer(value)
.Object
})
#' NlmeCovariateParameter
#'
#' Class represents an NLME Covariate parameter
#'
#' @param name Name of covariate parameter
#' @param type Type of covariate parameter: Continuous|Category|Occasion
#' @param direction Curve fitting method: Forward|Interpolate|Backward
#' @param isDiagonal Is the structure diagonal (TRUE)| or box (FALSE)
#' @param centerValue Covariate centering value
#' @param isPositive Are the covariate values all positive
#' @param continuousType Type of value to use for the centering value:
#' CovarNumber|CovarMean|CovarMedian
#' @param covarEffList List of covariate effects
#' @param covarItems List of covariate items
#'
#'
#' @keywords internal
NlmeCovariateParameter <- setClass(
"NlmeCovariateParameter",
slots = c(
name = "character",
type = "numeric",
direction = "numeric",
isDiagonal = "logical",
centerValue = "character",
# centerValue="list",
isPositive = "logical",
continuousType = "numeric",
# continuousType="list",
covarEffList = "list",
catEffInitValues = "list",
covarItems = "list"
)
)
setMethod("initialize", "NlmeCovariateParameter",
function(.Object,
name = "",
type = Continuous,
direction = Forward,
centerValue = "",
isDiagonal = TRUE,
isPositive = TRUE,
continuousType = CovarNumber) {
.Object@name <- name
.Object@isDiagonal <- isDiagonal
.Object@type <- type
.Object@direction <- direction
.Object@centerValue <- centerValue
.Object@isPositive <- isPositive
.Object@continuousType <- continuousType
.Object@catEffInitValues <- list()
.Object
})
#' Prints covariate parameter information
#'
#' Prints covariate parameter information
#'
#' @param x Model covariate
#' @inheritParams ellipsis::dots_used
#'
#' @noRd
#' @keywords internal
print.NlmeCovariateParameter <- function(x, ...) {
CovarDirectionNames <- c("Backward", "Interpolate", "Forward")
type <- x@type
if (type == COVAR_CONTINUOUS) {
cat(paste(x@name, " : Continuous"), "\n")
cat(paste("Direction : ", CovarDirectionNames[x@direction]), "\n")
cat(paste("Center : ", x@centerValue), "\n")
cat(paste("Type : ", CovarEvalNames[x@continuousType]), "\n")
cat(paste("Positive? : ", x@isPositive), "\n")
} else if (type %in% c(Category, COVAR_OCCASION)) {
if (type == Category) {
cat(paste(x@name, " : Category"), "\n")
} else {
cat(paste(x@name, " : Occasion"), "\n")
}
cat(paste("Direction : ", CovarDirectionNames[x@direction]), "\n")
for (covarItem in x@covarItems) {
cat(paste(covarItem@name, covarItem@value), "\n")
}
}
cat(x@covarEffList, "\n")
}
#' Creates a string of all attributes for a covariate
#'
#' Creates a string of all attributes for a covariate
#'
#' @param obj Model covariate
#'
#' @examples
#' \donttest{
#' covariateToString(weight)
#' }
#' @keywords internal
#' @noRd
covariateToString <- function(obj) {
str <- ""
type <- attr(obj, "type")
if (type == COVAR_CONTINUOUS) {
str <- sprintf("%s", attr(obj, "name"))
} else if (type == Category) {
str <- sprintf("%s(", attr(obj, "name"))
l <- attr(obj, "covarItems")
sep <- ""
for (c in l) {
str <- paste(str, sprintf("%s\"%s\"=%d", sep, attr(c, "name"),
attr(c, "value")))
sep <- ","
}
str <- paste(str, ")")
} else if (type == COVAR_OCCASION) {
str <- sprintf("%s(", attr(obj, "name"))
l <- attr(obj, "covarItems")
sep <- ""
for (c in l) {
str <- paste(str, sprintf("%s\"%s\"=%d", attr(c, "name"),
attr(c, "value")))
sep <- ";"
}
}
return(str)
}
#' Creates string from each covariate attribute
#'
#' Creates string from each covariate attribute
#'
#' @param obj Model covariate
#' @keywords internal
#'
covariatePartsString <- function(obj) {
str <- ""
type <- obj@type
if (type == COVAR_CONTINUOUS) {
str <- ""
} else if (type %in% c(COVAR_CATEGORY, COVAR_OCCASION)) {
str <- "("
l <- obj@covarItems
sep <- ""
for (c in l) {
if (c@name != "") {
str <- paste0(str,
sprintf("%s\"%s\"=%d", sep, c@name, c@value))
sep <- ", "
}
}
str <- paste0(str, ")")
}
return(str)
}
.fill_covarCategories <-
function(covar, categories, categoryNames) {
if (length(categoryNames) > 0 &&
length(categories) != length(categoryNames)) {
stop(
"Number of categories specified for covariate",
name,
"do not match with the number of labels:\n",
"categories: ",
paste(categories, collapse = " "),
"\nlabels: ",
paste(categoryNames, collapse = " ")
)
}
if (length(categories) != 0) {
covar@covarItems <-
lapply(seq_along(categories),
function(i, CovCategories, CovCatNames) {
if (length(categoryNames) == 0) {
NlmeCovarItem("", CovCategories[i])
} else {
NlmeCovarItem(CovCatNames[i], CovCategories[i])
}
},
categories, categoryNames)
}
covar
}
#' Convenience method to create a continuous covariate
#'
#' Convenience method to create a continuous covariate
#'
#' @param name Name of the covariate
#' @param centerValue Covariate centering value
#' @param isPositive Are the covariate values all positive?
#' @param direction Curve fitting method: Forward|Interpolate|Backward
#' @param continuousType Type of value to use for the centering value:
#' CovarNumber|CovarMean|CovarMedian
#'
#' @examples
#' \donttest{
#' continuousCovariate(
#' name = "weight",
#' centerValue = 0,
#' isPositive = FALSE,
#' direction = Backward,
#' continuousType = CovarNumber
#' )
#' }
#'
#' @noRd
continuousCovariate <- function(name = "",
centerValue = 0,
isPositive = FALSE,
direction = Backward,
continuousType = CovarNumber) {
covar <- NlmeCovariateParameter(
name,
type = Continuous,
isPositive = isPositive,
centerValue = centerValue,
continuousType = continuousType
)
covar
}
#' Convenience method to create a categorical covariate
#'
#' Convenience method to create a categorical covariate
#'
#' @param name Name of the covariate
#' @param categories Numerical values for each category
#' @param categoryNames Names of each category
#' @param direction Curve fitting method: Forward|Backward|Interpolate
#'
#' @examples
#' \donttest{
#' sex <- categoricalCovariate("sex",
#' c(1, 2),
#' c("female", "male"),
#' direction = Forward
#' )
#' }
#'
#' @noRd
categoricalCovariate <- function(name = "",
categories = c(),
categoryNames = c(),
direction = Backward) {
covar <- NlmeCovariateParameter(name,
type = Category,
direction = direction)
covar <- .fill_covarCategories(covar, categories, categoryNames)
covar
}
#' Convenience method to create an occasion covariate
#'
#' Convenience method to create an occasion covariate
#'
#' @param name Name of the covariate
#' @param occasions Numerical values for each occasion
#' @param occasionNames Names of each occasion
#' @param direction Curve fitting method: Forward|Backward|Interpolate
#' @param isDiagonal Is the structure diagonal (TRUE) or box (FALSE)?
#'
#' @examples
#' \donttest{
#' occ <- occasionCovariate("OCC",
#' c(1, 2),
#' c("OCC1", "OCC2"),
#' direction = Forward
#' )
#' }
#'
#' @noRd
occasionCovariate <- function(name = "",
occasions = c(),
occasionNames = c(),
direction = Backward,
isDiagonal = TRUE) {
covar <- NlmeCovariateParameter(name,
type = Occasion,
isDiagonal = isDiagonal,
direction = direction)
covar <- .fill_covarCategories(covar, occasions, occasionNames)
covar
}
#' Add covariate to model object
#'
#' Add a continuous, categorical, or occasion covariate to model object and set
#' covariate effect on structural parameters.
#'
#' @param .Object Model object
#' @param covariate Name of covariate. If the involved model has columns
#' mapped (i.e. model with `columnMap = TRUE`) use named character if the name
#' of the covariate is different from the corresponding column in the input
#' dataset, for example, `covariate = c(BW = "BodyWeight")`, where `BW`
#' denotes the name of the covariate, and `"BodyWeight"` is the name of the
#' corresponding column in the input dataset.
#' @param effect Name of structural parameter(s) on which the covariate
#' has an effect. Specify `effect` as character or character vector if the
#' covariate has an effect on multiple structural parameters.
#' @param type Type of covariate. Options are `"Continuous"`,
#' `"Categorical"`, `"Occasion"`.
#' @param direction Direction of missing values propagation (if no covariate
#' value is given). Options are `"Forward"`, `"Interpolate"`, `"Backward"`,
#' where `"Interpolate"` is only applicable to `type = "Continuous"`.
#' @param option Options are `"Yes"`, `"PlusOne"`, or `"No"`, where
#' `option = "No"` will remove the covariate effect from the specified
#' structural parameter(s), but retain the covariate in the model. Note:
#' `option = "PlusOne"` is only applicable to continuous and categorical
#' covariates in the case where structural parameters have `style =
#' "LogNormal"`. Multiple options are not supported (i.e. all covariate
#' effects in the call are supposed to have the same `option`. If different
#' `option`s are required for different covariate effects, sequential calls of
#' current method could be done.
#' @param center Centering method. Options are `"Mean"`, `"Median"`,
#' `"Value"` or `"None"`. Only applicable to covariate `type = "Continuous"`.
#' Must include argument `centerValue` if `center = "Value"`.
#' @param centerValue Value used to center covariate. Only applicable if
#' argument `center = "Value"` and `type = "Continuous"`.
#' @param levels Unique values of categorical or occasion covariate. Only
#' applicable to covariate `type = "Categorical"` or `type = "Occasion"`.
#' @param labels Label names (in the same order as levels) for unique levels of
#' categorical or occasion covariate in data. Only applicable to covariate
#' `type = "Categorical"` or `type = "Occasion"` where its corresponding
#' column in the input dataset has character type.
#' @param isDiagonal Set to `FALSE` if inter-occasion covariance matrix is not
#' diagonal matrix. Only applicable to covariate `type = "Occasion"`.
#' @param values Initial values for the diagonal elements of the inter-occasion
#' covariance matrix (if `isDiagonal = TRUE`) or initial values for the lower
#' triangular elements (including diagonal elements) of inter-occasion
#' covariance matrix (if `isDiagonal = FALSE`) in a row-wise order. Only
#' applicable for covariate `type = "Occasion"`.
#' @param isPositive Set to `FALSE` if covariate contains negative values.
#' Only applicable to covariate `type = "Continuous"`.
#'
#' @details The following relationships are applicable for covariates:
#' * `direction = "Forward"` is equivalent to PML code 'fcovariate(CovName)';
#' * `direction = "Backward"` is equivalent to PML code 'covariate(CovName)';
#' * `direction = "Interpolate"` is equivalent to PML code 'interpolate(CovName)'.
#'
#' If the structural parameter has `style = "LogNormal"`, the options are
#' reflected in PML code as follows:
#' * `option = "Yes"` is equivalent to
#' `stparm(V = tvV * wt^dVdwt * exp(dVdsex1*(sex==1)) * exp(nV))`;
#' * `option = "PlusOne` is equivalent to
#' `stparm(V = tvV * (1+wt*dVdwt) * (1+dVdsex1*(sex==1)) * exp(nV))`.
#'
#' @return Modified \code{NlmePmlModel} object
#' @examples
#' model <- pkmodel(
#' numCompartments = 2,
#' data = pkData,
#' ID = "Subject",
#' Time = "Act_Time",
#' A1 = "Amount",
#' CObs = "Conc"
#' )
#'
#' # Add Gender covariate of type categorical
#' model <- addCovariate(model,
#' covariate = "Gender",
#' type = "Categorical",
#' effect = c("V2", "Cl2"),
#' levels = c(0, 1),
#' labels = c("Female", "Male")
#' )
#'
#' # Add BodyWeight covariate of type continuous
#' model <- addCovariate(model,
#' covariate = "BodyWeight",
#' type = "Continuous",
#' direction = "Backward",
#' center = "Mean",
#' effect = c("V", "Cl")
#' )
#' @import data.table
#' @md
#' @export
addCovariate <- function(.Object,
covariate,
effect = NULL,
type = c("Continuous", "Categorical", "Occasion"),
direction = c("Forward", "Interpolate", "Backward"),
option = c("Yes", "PlusOne", "No"),
center = NULL,
centerValue = NULL,
levels = NULL,
labels = NULL,
isDiagonal = TRUE,
values = NULL,
isPositive = TRUE) {
if (!inherits(.Object, "NlmePmlModel")) {
stop("Object must be of class 'NlmePmlmodel'")
}
if (.Object@isTextual) {
stop("`addCovariate()` cannot be used for edited or textual models")
}
if (!missing(type) && length(type) > 1) {
stop(
"Vectorized type argument is not supported. ",
"If different types are required, please use sequential addCovariate calls."
)
}
type <- match.arg(type)
if (!missing(direction) && length(direction) > 1) {
stop(
"Vectorized direction argument is not supported. ",
"If different directions are required, please use sequential addCovariate calls."
)
}
direction <- match.arg(direction)
if (!missing(option) && length(option) > 1) {
stop(
"Vectorized option argument is not supported. ",
"If different options are required, please use sequential addCovariate calls."
)
}
option <- match.arg(option)
if (is.null(names(covariate))) {
names(covariate) <- covariate
}
cov <- names(covariate)
covMappedColumn <- covariate
stpnames <- structuralParameterNames(.Object)
if (cov %in% stpnames) {
stop(paste0("covariate '", cov, "' exists in structural parameter names"))
}
covAvail <- FALSE
mdata <- NULL
. <- NULL # R CMD CHECK
if (!is.null(values)) {
if (isDiagonal) {
if (any(values <= 0)) {
stop("supplied `values` must be positive")
}
} else {
if (any(values < 0)) {
stop(
"`isDiagonal = FALSE` supplied `values` for block matrix must be greater than or equal to 0 "
)
}
}
}
`%notin%` <- Negate(`%in%`)
if (!is.null(.Object@inputData)) {
mdata <- as.data.frame(.Object@inputData)
# Check if covariate is missing from data or duplicated in data
data_cols <- colnames(mdata)
if (covMappedColumn %notin% data_cols && option != "No") {
covAvail <- FALSE
warning(
paste0(
"Column '",
covMappedColumn,
"' not found in data. Please manually map '",
covMappedColumn,
"' before model execution using `modelColumnMapping` function."
)
)
} else {
covAvail <- TRUE
}
if (covAvail &&
option != "No" &&
inherits(mdata[, covMappedColumn], "numeric") &&
!is.null(labels)) {
stop("`labels` argument specified for covariate type numeric")
}
}
if (isPositive == FALSE && option == "Yes") {
stop("`option` = 'Yes' only applicable if `isPositive` = TRUE")
}
structuralParams <- .Object@structuralParams
for (p in seq_along(structuralParams)) {
if (structuralParams[[p]]@name %in% effect &&
option == "PlusOne") {
if (type == "Occasion") {
stop("`option` = 'PlusOne' is not applicable to occasion covariates")
}
if (structuralParams[[p]]@style != LogNormal) {
stop(
"`option` = 'PlusOne' only applicable to structural parameters with `style` = 'LogNormal', ",
structuralParams[[p]]@name,
" structural parameter has another 'style'."
)
}
}
}
if (!is.null(center) && length(center) > 1) {
stop("multiple values specified to argument `center`")
}
if (!is.null(centerValue)) {
if (center != "Value") {
stop("Must set argument center = 'Value' if supplying `centerValue` argument")
}
if (!is.numeric(centerValue)) {
stop("`centerValue` must be of type numeric")
}
}
if (!is.null(levels)) {
if (any(levels < 0)) {
stop("values specified to argument `levels` cannot be negative")
}
if (any(levels %% 1 != 0)) {
stop("values specified to argument `levels` cannot be a fraction")
}
if (length(unique(levels)) == 1) {
stop("values specified to argument `levels` must be unique")
}
}
if (is.null(center) || center == "None") {
center <- CovarNumber
centerValue <- ""
# centerValue <- as.character(mean(mdata[,covariate], na.rm = TRUE))
} else if (center == "Median") {
center <- CovarMedian
centerValue <- ""
# centerValue <- as.character(median(mdata[,covariate], na.rm = TRUE))
} else if (center == "Value") {
if (is.null(centerValue)) {
stop("Must specify argument `centerValue` if using `center` = 'Value'")
}
center <- CovarNumber
centerValue <- as.character(centerValue)
} else if (center == "Mean") {
center <- CovarMean
centerValue <- ""
} else {
stop("Argument `center` must be one of 'Mean', 'Median', 'Value', or 'None'")
}
if (direction == "Forward") {
direction <- Forward
} else if (direction == "Backward") {
direction <- Backward
} else {
# if (direction == "Interpolate")
direction <- Interpolate
if (type != "Continuous") {
stop("argument `direction` = 'Interpolate' only applicable for `type` = 'Continuous'")
}
}
if (!is.null(.Object@columnMapping@mapping$id) &&
.Object@columnMapping@mapping$id@columnName != "?") {
id_col_names <-
gsub(" ", "", .Object@columnMapping@mapping$id@columnName)
}
dt <- data.table::setDT(.Object@inputData)
if (type == "Continuous") {
type <- Continuous
if (!is.null(mdata) && covAvail) {
if (!is.null(.Object@columnMapping@mapping$id) &&
.Object@columnMapping@mapping$id@columnName != "?") {
numCovariatesData <- dt[,
.(group_column_name = any(unlist(lapply(
.SD, .is_numeric
)))),
by = c(id_col_names),
.SDcols = c(covMappedColumn)]
df <-
numCovariatesData[group_column_name == FALSE |
is.na(group_column_name),]
if (nrow(df) > 0) {
df$group_column_name <- NULL
if (ncol(df) == 1) {
stop(
paste0(
"Error: continuous covariate ",
cov,
" must have at least one numeric value assigned for each subject \n",
"Following subject(s) does not have one: ",
paste0(df[[.Object@columnMapping@mapping$id@columnName]], collapse = ", ")
)
)
} else {
sub_ids <- ""
for (row in 1:nrow(df)) {
sub_ids <-
paste0(sub_ids,
paste0(colnames(df), "=", df[row,], collapse = " "),
";")
}
stop(
paste0(
"Error: continuous covariate ",
covariate,
" must have at least one numeric value assigned for each subject \n",
"Following subject(s) does not have one: ",
sub_ids
)
)
}
}
}
}
} else if (type == "Categorical") {
type <- Category
if (is.null(levels) && option != "No") {
stop("must specify `levels` argument if `type` = 'Categorical' ")
}
if (center != CovarNumber) {
stop("argument `center` not applicable to covariate `type` = 'Categorical'")
}
} else {
# if (type == "Occasion")
type <- Occasion
if (is.null(levels) && option != "No") {
stop("must specify `levels` argument if `type` = 'Occasion' ")
}
if (center != CovarNumber) {
stop("argument `center` not applicable to covariate `type` = 'Occasion'")
}
if ("PlusOne" %in% option) {
stop("argument `option` = 'PlusOne' is not applicable for `type` = 'Occasion'")
}
}
if (type == Occasion || type == Category) {
if (!is.null(mdata) && covAvail) {
if (is.null(labels) && option != "No") {
if (!is.null(.Object@columnMapping@mapping$id) &&
.Object@columnMapping@mapping$id@columnName != "?") {
numCovariatesData <- dt[,
.(group_column_name = any(unlist(lapply(
.SD, .is_numeric
)))),
by = id_col_names,
.SDcols = c(covMappedColumn)]
df <-
numCovariatesData[group_column_name == FALSE |
is.na(group_column_name),]
if (nrow(df) > 0) {
df$group_column_name <- NULL
if (ncol(df) == 1) {
stop(
paste0(
"Error: must specify `labels` argument for covariate ",
cov,
" or set numerical values for subject(s): ",
paste0(df[[.Object@columnMapping@mapping$id@columnName]], collapse = ", ")
)
)
} else {
sub_ids <- ""
for (row in 1:nrow(df)) {
sub_ids <-
paste0(sub_ids,
paste0(colnames(df), "=", df[row,], collapse = " "),
";")
}
stop(
paste0(
"Error: must specify `labels` argument for covariate ",
cov,
" or set numerical values for subject(s): ",
sub_ids
)
)
}
}
}
} else if (!is.null(labels)) {
checkLabels(.Object, labels, covMappedColumn, cov)
}
}
if (is.null(labels) && is.null(mdata)) {
warning(
"Please specify `labels` argument for covariate if corresponding column in the input dataset is of type `character`."
)
}
}
if (option == "Yes") {
optionNum <- EnableEffect
} else if (option == "PlusOne") {
optionNum <- PlusOneEffect
} else {
# if (option == "No")
optionNum <- DisableEffect
}
covList <- .Object@covariateList
covName <- c()
for (i in seq_along(covList)) {
covName[i] <- covList[[i]]@name
}
if (covMappedColumn %notin% covName &&
optionNum == DisableEffect) {
stop(paste0(
"covariate '",
covMappedColumn,
"' not found in existing covariate names"
))
}
if (is.null(effect)) {
optionNum <- DisableEffect
} else {
for (i in seq_along(effect)) {
if (effect[[i]] %notin% structuralParameterNames(.Object)) {
stop(paste0(
"effect '",
effect[[i]],
"' not found in structural parameters"
))
}
}
}
if (cov %in% covName) {
# Check if Covariate already exists and update
for (i in seq_along(covList)) {
if (!covList[[i]]@name %in% cov)
next
# covList[[i]]@type <- type #Removed so user cannot change existing covar type
covList[[i]]@direction <- direction
covList[[i]]@isDiagonal <- isDiagonal
covList[[i]]@isPositive <- isPositive
covList[[i]]@centerValue <- centerValue
covList[[i]]@continuousType <- center
currentCovEffNames <- names(covList[[i]]@covarEffList)
for (stParm in effect) {
if (stParm %in% currentCovEffNames &&
covList[[i]]@covarEffList[[stParm]] != optionNum) {
message(
"updating option argument for covariate effect of ",
covariate,
" in structural parameter ",
stParm,
" to '",
option,
"'"
)
}
covList[[i]]@covarEffList[[stParm]] <- optionNum
}
}
.Object@covariateList <- covList
} else {
# Add new covariate if covariate doesn't exist
if (type == Category) {
covName <-
categoricalCovariate(
name = cov,
categories = levels,
categoryNames = labels,
direction = direction
)
} else if (type == Occasion) {
covName <-
occasionCovariate(
name = cov,
occasions = levels,
occasionNames = labels,
direction = direction,
isDiagonal = isDiagonal
)
} else {
# if (type == Continuous)
covName <- NlmeCovariateParameter(
name = cov,
type = Continuous,
continuousType = center,
centerValue = as.character(centerValue),
direction = direction,
isPositive = isPositive,
isDiagonal = isDiagonal
)
}
coveffect <- covName@name
coveffects <-
vector(mode = "character", length = length(effect))
for (i in seq_along(effect)) {
coveffects[[i]] <- c(coveffect)
}
names(coveffects) <- effect
.Object <-
addCovariates(.Object,
covariates = c(covName),
effects = c(coveffects))
if (!is.null(effect)) {
for (i in seq_along(effect)) {
covariateEffect(.Object, cov, effect[[i]]) <- optionNum
}
}
}
# Add random effect values specified for occasion covariate
.Object <- generatePMLModel(.Object)
if (type == Occasion && optionNum == EnableEffect) {
if (is.null(values)) {
if (isDiagonal) {
values <- rep(1, length(effect))
} else {
diagMatrix <- diag(1, nrow = length(effect), ncol = length(effect))
values <- diagMatrix[upper.tri(diagMatrix, diag = TRUE)]
}
}
if (isDiagonal) {
assertthat::assert_that(length(values) == length(effect), msg = "arguments `effect` and `values` are vectors of different lengths")
} else {
covMatrix <- matrix(NA, length(effect), length(effect))
tryCatch({
covMatrix[upper.tri(covMatrix, diag = TRUE)] <- values
},
error = function(e) {
stop(
"isDiagonal = FALSE; incorrect number of `values` specified for corresponding `effect` in block covariance matrix"
)
},
warning = function(w) {
stop(
"isDiagonal = FALSE; incorrect number of `values` specified for corresponding `effect` in block covariance matrix"
)
})
covMatrix[lower.tri(covMatrix)] <-
t(covMatrix)[lower.tri(covMatrix)]
if (!.is.positive.definite(covMatrix)) {
stop(
"block covariance matrix specified is not positive definite for supplied `values` argument"
)
}
}
initOccasionRandomEffect(.Object, covMappedColumn) <- values
}
if (covAvail) {
# && optionNum != DisableEffect){
.check_column_mappings(covMappedColumn, data = mdata)
mappedColumn(.Object, cov) <- paste0(covMappedColumn)
.Object@columnMapping@mapping[[cov]]@variableType <-
list(type = "covariate",
covType = type)
} else {
if (!is.null(.Object@columnMapping@mapping[[cov]])) {
columnName <- .Object@columnMapping@mapping[[cov]]@columnName
} else {
columnName <- "?"
}
.Object@columnMapping@mapping[[cov]] <- NlmeColumnMap(
variableName = cov,
columnName = columnName,
variableType = list(type = "covariate",
covType = type)
)
}
return(.Object)
}
checkCatCovariateMappingColumn <-
function(map,
inputData,
columnToMap,
modelTermName) {
if (!is.null(map$id) && map$id@columnName != "?") {
id_col_names <- gsub(" ", "", map$id@columnName)
dt <- data.table::setDT(inputData)
numCovariatesData <- dt[,
.(group_column_name = any(unlist(lapply(
.SD, .is_numeric
)))),
by = id_col_names,
.SDcols = c(columnToMap)]
df <-
numCovariatesData[group_column_name == FALSE |
is.na(group_column_name),]
if (nrow(df) > 0) {
df$group_column_name <- NULL
if (ncol(df) == 1) {
if (map[[modelTermName]]@variableType$covType != COVAR_CONTINUOUS) {
emptyCovariatesData <- dt[,
.(group_column_name = any(unlist(lapply(.SD, function(x) {
any(grepl("\\s", x)) ||
any(x == "") ||
any(x == "NA") || any(x == "na") || any(x == ".")
})))),
by = id_col_names,
.SDcols = c(columnToMap)]
df1 <-
emptyCovariatesData[group_column_name == TRUE |
is.na(group_column_name),]
if (nrow(df1) == 0) {
warning(
paste0(
"The corresponding data column ",
columnToMap,
" for covariate ",
modelTermName,
" is of class character. Please specify the name and the associated value for each category through 'addLabel' function "
)
)
} else {
df1$group_column_name <- NULL
warning(
paste0(
"The corresponding data column ",
columnToMap,
" for covariate ",
modelTermName,
" does not contain any valid value for subject(s): ",
paste0(df1[[map$id@columnName]], collapse = ", ")
)
)
}
} else {
warning(
paste0(
"The corresponding data column ",
columnToMap,
" for covariate ",
modelTermName,
" does not contain any valid value for subject(s): ",
paste0(df[[map$id@columnName]], collapse = ", ")
)
)
}
} else {
sub_ids <- ""
for (row in 1:nrow(df)) {
sub_ids <-
paste0(sub_ids,
paste0(colnames(df), "=", df[row,], collapse = " "),
";")
}
if (map[[modelTermName]]@variableType$covType != COVAR_CONTINUOUS) {
emptyCovariatesData <- dt[,
.(group_column_name = any(unlist(lapply(.SD, function(x) {
grepl("\\s", x) || x == "" || x == "NA" || x == "na" || x == "."
})))),
by = id_col_names,
.SDcols = c(columnToMap)]
df1 <-
emptyCovariatesData[group_column_name == TRUE |
is.na(group_column_name),]
if (nrow(df1) == 0) {
warning(
paste0(
"The corresponding data column ",
columnToMap,
" for covariate ",
modelTermName,
" is of class character. Please specify the name and the associated value for each category through 'addLabel' function "
)
)
} else {
warning(
paste0(
"The corresponding data column ",
columnToMap,
" for covariate ",
modelTermName,
" does not contain any valid value for subject(s): ",
sub_ids
)
)
}
} else {
warning(
paste0(
"The corresponding data column ",
columnToMap,
" for covariate ",
modelTermName,
" does not contain any valid value for subject(s): ",
sub_ids
)
)
}
}
}
}
}
checkLabels <- function(model, labels, covMappedColumn, cov) {
if (!is.null(model@columnMapping@mapping$id) &&
model@columnMapping@mapping$id@columnName != "?") {
dt <- data.table::setDT(model@inputData)
id_col_names <-
gsub(" ", "", model@columnMapping@mapping$id@columnName)
covLevelsData <-
dt[, .(group_column_name = any(unlist(lapply(.SD, tolower)) %in% tolower(labels)) ||
any(unlist(lapply(
.SD, .is_numeric
)))),
by = id_col_names,
.SDcols = c(covMappedColumn)]
df <-
covLevelsData[group_column_name == FALSE |
is.na(group_column_name),]
if (nrow(df) > 0) {
df$group_column_name <- NULL
if (ncol(df) == 1) {
stop(
paste0(
"The corresponding data column ",
covMappedColumn,
" for covariate ",
cov,
" does not contain any valid value for subject(s) ",
paste0(df[[model@columnMapping@mapping$id@columnName]], collapse = ", ")
)
)
} else {
sub_ids <- ""
for (row in 1:nrow(df)) {
sub_ids <-
paste0(sub_ids,
paste0(colnames(df), "=", df[row,], collapse = " "),
";")
}
stop(
paste0(
"The corresponding data column ",
covMappedColumn,
" for covariate ",
cov,
" does not contain any valid value for subject(s) ",
sub_ids
)
)
}
}
}
}
#' Remove covariate from structural parameters in a model object.
#'
#' Remove one or more covariates from structural parameters in a model object.
#'
#' @param .Object Model object
#' @param covariate Covariates to remove from model. If \code{NULL} all covariates will be removed from model.
#' @param paramName Structural parameters for which to remove covariate effect(s) from. If \code{NULL} covariate effect will be removed from all structural parameters.
#'
#' @return Modified \code{NlmePmlModel} object
#' @examples
#' model <- pkmodel(
#' numCompartments = 2,
#' data = pkData,
#' ID = "Subject",
#' Time = "Act_Time",
#' A1 = "Amount",
#' CObs = "Conc"
#' )
#'
#' # Add Gender covariate of type categorical
#' model <- addCovariate(model,
#' covariate = "Gender",
#' type = "Categorical",
#' effect = c("V2", "Cl2"),
#' levels = c(0, 1),
#' labels = c("Female", "Male")
#' )
#'
#' # Add BodyWeight covariate of type continuous
#' model <- addCovariate(model,
#' covariate = "BodyWeight",
#' type = "Continuous",
#' direction = "Backward",
#' center = "Mean",
#' effect = c("V", "Cl")
#' )
#'
#' # Remove all covariates from model
#' model <- removeCovariate(model)
#'
#' @export
removeCovariate <-
function(.Object,
covariate = NULL,
paramName = NULL) {
if (is.null(covariate) && is.null(paramName)) {
.Object <- resetCovariateEffects(.Object)
.Object@covariateList <- list()
.Object <- generatePML(.Object)
return(.Object)
}
covList <- .Object@covariateList
covNames <- vector(mode = "list", length = length(covList))
`%notin%` <- Negate(`%in%`)
for (i in seq_along(covList)) {
covNames[[i]] <- covList[[i]]@name
}
for (i in seq_along(covariate)) {
if (covariate[[i]] %notin% covNames) {
stop(paste0(
"covariate '",
covariate[[i]],
"' not found in existing covariate names"
))
}
}
if (!is.null(covariate) && is.null(paramName)) {
for (i in seq_along(covList)) {
if (any(covariate %in% covList[[i]]@name)) {
.Object@columnMapping@mapping[[covList[[i]]@name]] <- NULL
covList[[i]] <- list()
}
}
covList <- covList[lapply(covList, length) > 0]
.Object@covariateList <- covList
}
if (!is.null(covariate) && !is.null(paramName)) {
for (i in seq_along(covList)) {
if (any(covariate %in% covList[[i]]@name)) {
for (j in seq_along(covList[[i]]@covarEffList)) {
if (any(paramName %in% names(covList[[i]]@covarEffList[j]))) {
covList[[i]]@covarEffList[j] <- NULL
}
}
}
}
}
.Object@covariateList <- covList
.Object <- generatePML(.Object)
.Object
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.