Nothing
#' Executes an NLME simulation
#'
#' Executes an NLME simulation
#'
#' @inheritParams fitmodel
#' @param simParams Simulation parameters. See \code{\link{NlmeSimulationParams}}.
#' If \code{missing}, default parameters generated by NlmeSimulationParams() are used.
#' @param params Engine parameters. See \code{\link{engineParams}}. The common
#' parameters include: sort, ODE, rtolODE, atolODE, maxStepsODE.
#' If \code{missing}, default parameters generated by engineParams(model) are used.
#' @param hostPlatform Host definition for model execution. See \code{\link{hostParams}}.
#' If \code{missing}, simple local host is used.
#' @param ... Additional class initializer arguments for \code{\link{NlmeSimulationParams}}, or
#' arguments available inside \code{\link{hostParams}} or \code{\link{engineParams}} functions.
#' If \code{\link{engineParams}} arguments are supplied through both \code{params} argument
#' and additional argument (i.e., ellipsis), then the arguments in \code{params} will be ignored
#' and only the additional arguments will be used with warning.
#' If \code{\link{hostParams}} arguments are supplied through both \code{hostPlatform}
#' argument and additional argument, then its slots will be overridden by additional arguments.
#' In addition, if \code{\link{NlmeSimulationParams}} arguments are supplied through both
#' \code{simParams} argument and additional argument,
#' then its slots will be overridden by additional arguments.
#'
#' @return returns job properties if runInBackground is \code{TRUE};
#' if runInBackground is \code{FALSE} and the function is called in interactive mode,
#' the resulted simulated tables wil be loaded and presented as a list;
#' if runInBackground is \code{FALSE} and the function is called in non-interactive mode,
#' the list returned will have just the full paths of the tables generated.
#'
#' @examples
#' \donttest{
#' SimTableObs <- tableParams(
#' name = "SimTableObs.csv",
#' timesList = "0,1,2,4,4.9,55.1,56,57,59,60",
#' variablesList = "C, CObs",
#' timeAfterDose = FALSE,
#' forSimulation = TRUE
#' )
#'
#' simParams <- NlmeSimulationParams(
#' numReplicates = 2,
#' simulationTables = SimTableObs
#' )
#' # Define the model
#' model <- pkmodel(
#' numComp = 2,
#' absorption = "Extravascular",
#' ID = "Subject",
#' Time = "Act_Time",
#' CObs = "Conc",
#' Aa = "Amount",
#' data = pkData,
#' modelName = "PkModel"
#' )
#' results <- simmodel(model, simParams)
#' # with seed given additionally:
#' results <- simmodel(model, simParams, seed = 3527)
#' }
#' @export
simmodel <- function(model,
simParams,
params,
hostPlatform = NULL,
runInBackground = FALSE,
...) {
if (missing(model)) {
stop("model argument is required for run.")
} else {
stopifnot(inherits(model, "NlmePmlModel"))
}
ellipsisArgs <- list(...)
if ("simpleTables" %in% names(ellipsisArgs)) {
warning("simpleTables argument is not supported by simmodel.",
" Please use simulationTables")
}
hostPlatform <-
.load_hostPlatform(hostPlatform,
ellipsisArgs,
model = model,
mode = "vpc")
if (missing(simParams)) {
simParams <- NlmeSimulationParams()
} else {
if (!inherits(simParams, "NlmeSimulationParams")) {
stop("Please check the simParams argument;",
" NlmeSimulationParams class instance expected.")
}
}
simParams <- .modify_s4class(simParams, ellipsisArgs)
params <- .load_engineParams(model, params, ellipsisArgs)
model@modelInfo@workingDir <-
.prepare_wd(model@modelInfo@workingDir)
Certara.RsNLME::writeDefaultFiles(model = model,
dataset = model@dataset,
simParams = simParams)
return(
RunVpcSimulation(
hostPlatform = hostPlatform,
params = params,
dataset = model@dataset,
vpcParams = NULL,
simParams = simParams,
runInBackground = runInBackground,
workingDir = model@modelInfo@workingDir
)
)
}
#' Perform visual predictive check for NLME models
#'
#' Perform visual predictive check for NLME models
#'
#' @inheritParams fitmodel
#' @param vpcParams VPC argument setup. See \code{\link{NlmeVpcParams}}.
#' If \code{missing}, default values generated by NlmeVpcParams() are used.
#' @param params Engine argument setup. See \code{\link{engineParams}}. The following
#' arguments are the subject of interest: sort, ODE, rtolODE, atolODE, maxStepsODE.
#' If \code{missing}, default values generated by engineParams(model) are used.
#' @param hostPlatform Host definition for model execution. See \code{\link{hostParams}}.
#' If \code{missing}, simple local host is used.
#' @param ... Additional class initializer arguments for \code{\link{NlmeVpcParams}} or
#' \code{\link{hostParams}}, or arguments available inside \code{\link{engineParams}} functions.
#' If \code{\link{engineParams}} arguments are supplied through both \code{params} argument
#' and additional argument (i.e., ellipsis), then the arguments in \code{params} will be ignored
#' and only the additional arguments will be used with warning.
#' If \code{\link{hostParams}} arguments are supplied through both \code{hostPlatform}
#' argument and additional argument, then its values will be overridden by additional arguments.
#' In addition, if \code{\link{NlmeVpcParams}} arguments are supplied through both
#' \code{vpcParams} argument and additional argument,
#' then its slots will be overridden by additional arguments.
#'
#' @return if runInBackground is \code{TRUE}, it returns job properties.
#' Otherwise, \itemize{
#' \item {If the function is called in an interactive mode,
#' the resulting simulated tables and summary statistics tables will be loaded
#' and presented as a list;}
#' \item {If the function is called in a non-interactive mode,
#' it returns the full paths of the tables generated}}
#'
#' @examples
#' \donttest{
#'
#' job <- fitmodel(model)
#'
#' # View estimation results
#' print(job)
#'
#' finalModelVPC <- copyModel(model, acceptAllEffects = TRUE, modelName = "model_VPC")
#'
#' # View the model
#' print(finalModelVPC)
#'
#' # Set up VPC arguments to have PRED outputted to simulation output dataset "predout.csv"
#' vpcSetup <- NlmeVpcParams(outputPRED = TRUE)
#'
#' # Run VPC using the default host, default values for the relevant NLME engine arguments
#' finalVPCJob <- vpcmodel(model = finalModelVPC, vpcParams = vpcSetup)
#' # the same as:
#' finalVPCJob <- vpcmodel(model = finalModelVPC, outputPRED = TRUE)
#'
#' # Observed dataset predcheck0.csv
#' dt_ObsData <- finalVPCJob$predcheck0
#'
#' # Simulation output dataset predout.csv
#' dt_SimData <- finalVPCJob$predout
#'
#' # Add PRED from REPLICATE = 0 of simulation output dataset to observed input dataset
#' dt_ObsData$PRED <- dt_SimData[REPLICATE == 0]$PRED
#'
#' # tidyvpc package VPC example:
#' # library(tidyvpc)
#' library(magrittr)
#' # Create a regular VPC plot with binning method set to be "jenks"
#' binned_VPC <- observed(dt_ObsData, x = IVAR, yobs = DV) %>%
#' simulated(dt_SimData, ysim = DV) %>%
#' binning(bin = "jenks") %>%
#' vpcstats()
#'
#' plot_binned_VPC <- plot(binned_VPC)
#'
#' # Create a pcVPC plot with binning method set to be "jenks"
#' binned_pcVPC <- observed(dt_ObsData, x = IVAR, yobs = DV) %>%
#' simulated(dt_SimData, ysim = DV) %>%
#' binning(bin = "jenks") %>%
#' predcorrect(pred = PRED) %>%
#' vpcstats()
#'
#' plot_binned_pcVPC <- plot(binned_pcVPC)
#' }
#'
#' @export
vpcmodel <- function(model,
vpcParams,
params,
hostPlatform = NULL,
runInBackground = FALSE,
...) {
if (missing(model)) {
stop("model argument is required for run.")
} else {
stopifnot(inherits(model, "NlmePmlModel"))
}
ellipsisArgs <- list(...)
hostPlatform <-
.load_hostPlatform(hostPlatform,
ellipsisArgs,
model = model,
mode = "vpc")
if (missing(vpcParams)) {
vpcParams <- NlmeVpcParams()
} else {
stopifnot(inherits(vpcParams, "NlmeVpcParams"))
}
if ("simpleTables" %in% names(ellipsisArgs)) {
warning("simpleTables argument is not supported by vpcmodel.",
" Please use simulationTables")
}
vpcParams <- .modify_s4class(vpcParams, ellipsisArgs)
if (model@isTextual) {
# some responses could be here
ObsTypes <- sapply(model@columnMapping@mapping,
function(x) {
name <- x@variableType$type
name
})
ObsTypes <- ObsTypes[!is.null(ObsTypes) & ObsTypes != ""]
on <- names(ObsTypes[ObsTypes == "observation"])
} else {
on <- Certara.RsNLME::observationNames(model)
}
if (length(vpcParams@observationVars) == 0) {
# will provide VPC for all variables found if nothing is specified
observationVars <- c()
for (Obs in on) {
observationVars <-
c(observationVars, NlmeObservationVar(name = Obs))
}
vpcParams@observationVars <- observationVars
} else {
vpcObs <- sapply(vpcParams@observationVars, function(x) {
x@name
})
stopExecution <- FALSE
for (VPCname in vpcObs) {
if (!VPCname %in% on) {
warning(VPCname, " not found in the list of observables.")
stopExecution <- TRUE
}
}
if (stopExecution) {
stop(
"Cannot proceed with VPC since one or more specified observable variables were not found."
)
}
}
params <- .load_engineParams(model, params, ellipsisArgs)
if (hostPlatform@hostType == "Windows" && runInBackground) {
warning("`runInBackground = TRUE` is not available on Windows. Setting argument to `FALSE`.")
runInBackground <- FALSE
} else {
stopifnot(is.logical(runInBackground))
}
model@modelInfo@workingDir <-
.prepare_wd(model@modelInfo@workingDir)
workingDir <- model@modelInfo@workingDir
writeDefaultFiles(model = model,
dataset = model@dataset,
simParams = vpcParams)
return(
RunVpcSimulation(
hostPlatform = hostPlatform,
params = params,
dataset = model@dataset,
vpcParams = vpcParams,
simParams = NULL,
runInBackground = runInBackground,
workingDir = workingDir
)
)
}
#' Class initializer for NlmeObservationVar-class
#'
#' Describes an observation(observe,multi,...)
#'
#' @param name Name of observation variable
#' @param xaxis One of: T, TAD, PRED. If nothing is specified,
#' the user-specified name of axis is used.
#' @param binningMethod Method of binning: \code{"none"} (default),
#' \code{"KMEANS"}, \code{"CENTERS"}, \code{"BOUNDARIES"}
#' @param binningOption Centers or boundary values specified as numeric vector
#' @param stratifyColumns Categorical covariates (up to 3)
#' for simulation stratification (overrides stratifyColumns given
#' in NlmeVpcParams)
#' @param ygroup Values specifying the category right
#' boundaries (used for categorical observations only; useful for count)
#' @param quantilesValues Quantiles to be estimate for each x value (bin value) in each strata for the current
#' observable (internal quantiles)
#' @param quantilesSecondaryValues Quantiles to estimate for each internal quantile
#' (quantiles for quantile)
#' @param BQLasLLOQ Flag to replace BLQ values with the LLOQ value
#'
#' @export NlmeObservationVar
#'
#' @examples
#'
#' var <- NlmeObservationVar(
#' name = "Cobs",
#' xaxis = "t",
#' binningMethod = "none",
#' quantilesValues = c(5, 50, 95)
#' )
#' @keywords internal
NlmeObservationVar <- setClass(
"NlmeObservationVar",
representation(
name = "character",
xaxis = "character",
binningMethod = "character",
binningOption = "numeric.character",
stratifyColumns = "character",
ygroup = "numeric.character",
quantilesValues = "numeric.character",
quantilesSecondaryValues = "numeric.character",
BQLasLLOQ = "logical"
)
)
setMethod("initialize", "NlmeObservationVar",
function(.Object,
name,
xaxis = "t",
binningMethod = "none",
binningOption = numeric(0),
stratifyColumns = "",
ygroup = numeric(0),
quantilesValues = c(5, 50, 95),
quantilesSecondaryValues = numeric(0),
BQLasLLOQ = FALSE) {
.Object@name <- name
xaxis <- trimws(xaxis)
if (grepl("(^T$)", xaxis, ignore.case = TRUE)) {
.Object@xaxis <- "t"
} else if (grepl("(^TAD$)|(^PRED$)", xaxis, ignore.case = TRUE)) {
.Object@xaxis <- toupper(xaxis)
} else {
.Object@xaxis <- xaxis
}
if (grepl("^KMEANS", binningMethod, ignore.case = TRUE)) {
.Object@binningMethod <- "kmeans"
} else if (grepl("^center", binningMethod, ignore.case = TRUE)) {
.Object@binningMethod <- "centers"
} else if (grepl("^bound", binningMethod, ignore.case = TRUE)) {
.Object@binningMethod <- "boundaries"
} else {
if (!grepl("^none$", binningMethod, ignore.case = TRUE)) {
warning(
"binning method given: '",
binningMethod,
"' is not kmeans, centers or boundaries; resetting to none.",
call. = FALSE
)
}
.Object@binningMethod <- "none"
binningMethod <- "none"
}
if (length(binningOption) > 0 &&
!binningMethod %in% c("centers", "boundaries")) {
warning(
"binning option is given: '",
binningOption,
"' but binningMethod is not 'centers' or 'boundaries' and will be ignored.",
call. = FALSE
)
} else if (missing(binningOption) &&
binningMethod %in% c("centers", "boundaries")) {
stop(
"With binning method given: '",
binningMethod,
"' the binningMethod argument should be specified (set of numeric values)"
)
}
.Object@binningOption <-
.check_numericText("binningOption", binningOption)
stratifyColumns <-
stratifyColumns[stratifyColumns != ""]
if (length(stratifyColumns) == 0) {
stratifyColumns <- ""
} else if (length(stratifyColumns) > 1) {
stratifyColumns <- paste(stratifyColumns)
}
.Object@stratifyColumns <- stratifyColumns
.Object@ygroup <- .check_numericText("ygroup", ygroup)
.Object@quantilesValues <-
.check_numericText("quantiles Values", quantilesValues)
.Object@quantilesSecondaryValues <-
.check_numericText("External quantiles Values", quantilesSecondaryValues)
.Object@BQLasLLOQ <- BQLasLLOQ
.Object
})
.check_numericText <- function(name, value) {
if (!missing(value) && is.character(value)) {
tryCatch(
value <- eval(parse(text = paste0("c(", value, ")"))),
error = function(e) {
stop("current numeric series for a ",
name,
":\n",
value,
"\nis not valid",
call. = FALSE)
}
)
}
value
}
#' Arguments for VPC runs
#'
#' Class initializer for arguments of visual predictive check (VPC) runs
#'
#' @param numReplicates Integer; Number of replicates to simulate the model
#' @param seed Integer; Random number generator seed
#' @param predCorrection Character; Type of correction to use when calculating a prediction-corrected observation.
#' Options are \code{"none", "proportional", "additive"}.
#' This option is ignored for discontinuous observed variables (categorical, count, and time-to-event).
#' @param predVarCorr Logical; Set to \code{TRUE} to use Prediction Variance Correction.
#' Only applicable to the case where \code{predCorrection} is set to either
#' \code{"proportional"} or \code{"additive"}.
#' @param outputPRED Logical; Set to \code{TRUE} to include population prediction (PRED) results
#' for continuous observed variables in output.
#' @param stratifyColumns Character or character vector; Names of categorical covariates (up to 3)
#' used to stratify modeling simulation results.
#' @param observationVars NlmeObservationVar class instance or list of these
#' instances
#' @param simulationTables Optional list of simulation tables.
#' \code{NlmeSimTableDef} class instance or a list of such instances. Could be
#' generated by \code{tableParams} wrapper function or by \code{NlmeSimTableDef} class instance
#' initializing directly.
#'
#' @seealso \code{\link{tableParams}, \link{NlmeSimTableDef}, \link{NlmeObservationVar}}
#'
#' @export NlmeVpcParams
#'
#' @examples
#' \donttest{
#'
#' job <- fitmodel(model)
#'
#' # View estimation results
#' print(job)
#'
#' finalModelVPC <- copyModel(model, acceptAllEffects = TRUE, modelName = "model_VPC")
#'
#' # View the model
#' print(finalModelVPC)
#'
#' # Set up VPC arguments to have PRED outputted to simulation output dataset "predout.csv"
#' vpcSetup <- NlmeVpcParams(outputPRED = TRUE)
#'
#' # Run VPC using the default host, default values for the relevant NLME engine arguments
#' finalVPCJob <- vpcmodel(model = finalModelVPC, vpcParams = vpcSetup)
#'
#' }
#' @keywords internal
NlmeVpcParams <- setClass(
"NlmeVpcParams",
representation(
numReplicates = "numeric",
seed = "numeric",
predCorrection = "character",
predVarCorr = "logical",
outputPRED = "logical",
stratifyColumns = "character",
observationVars = "list",
simulationTables = "list"
)
)
setMethod("initialize", "NlmeVpcParams",
function(.Object,
numReplicates = 100,
seed = 1234,
predCorrection = "none",
predVarCorr = FALSE,
outputPRED = FALSE,
stratifyColumns = "",
observationVars = list(),
simulationTables = list()) {
stopifnot(
length(numReplicates) == 1,
length(seed) == 1,
length(predCorrection) == 1,
length(predVarCorr) == 1
)
.Object@numReplicates <- numReplicates
.Object@seed <- seed
if (grepl("^prop", predCorrection, ignore.case = TRUE)) {
.Object@predCorrection <- "proportional"
} else if (grepl("^add", predCorrection, ignore.case = TRUE)) {
.Object@predCorrection <- "additive"
} else {
if (!grepl("^none$", predCorrection, ignore.case = TRUE)) {
warning(
"prediction correction given: '",
predCorrection,
"' is not additive or proportional; resetting to none.",
call. = FALSE
)
}
.Object@predCorrection <- "none"
predCorrection <- "none"
}
if (predCorrection == "none" && predVarCorr) {
warning(
"prediction correction is not requested, but predVarCorr = TRUE.",
"\nPlease check NlmeVpcParams data.",
call. = FALSE
)
}
if (!is.list(observationVars)) {
if (inherits(observationVars, "NlmeObservationVar")) {
observationVars <- list(observationVars)
} else {
stop("observationVars argument is not a list or NlmeObservationVar",
" class instance.")
}
}
if (!is.list(simulationTables)) {
if (inherits(simulationTables, "NlmeSimTableDef")) {
simulationTables <- list(simulationTables)
} else {
stop("simulationTables argument is not a list or NlmeSimTableDef",
" class instance.")
}
}
.Object@predVarCorr <- predVarCorr
.Object@outputPRED <- outputPRED
stratifyColumns <-
stratifyColumns[stratifyColumns != ""]
if (length(stratifyColumns) == 0) {
stratifyColumns <- ""
} else if (length(stratifyColumns) > 1) {
stratifyColumns <- paste(stratifyColumns)
}
.Object@stratifyColumns <- stratifyColumns
.Object@observationVars <- observationVars
.Object@simulationTables <- simulationTables
.Object
})
#' Class initializer for NlmeSimulationParams
#'
#' Use to create set of parameters for simulation runs. Parameters \code{numPoints, maxXRange, yVariables, simAtObs}
#' are related to the model in individual mode. They will be outputted to
#' the file specified in \code{model@dataset@simoutFilename}, simout.csv by default
#'
#' @param numReplicates Number of replicates to simulate
#' @param seed Random number generator seed
#' @param numPoints Number of points in simulation for the models in individual mode
#' @param maxXRange Maximum value of independent variable for the models in individual mode
#' @param yVariables Comma separated character string of Y variables for the models in individual mode
#' @param simAtObs Simulate values at observed values of ivar for the models in individual mode
#' @param simulationTables Optional list of simulation tables.
#' \code{NlmeSimTableDef} class instance or a list of such instances. Could be
#' generated by \code{tableParams} wrapper function or by \code{NlmeSimTableDef} class instance
#' initializing directly.
#'
#' @seealso \code{\link{tableParams}, \link{NlmeSimTableDef}}
#'
#' @export NlmeSimulationParams
#' @keywords internal
#' @examples
#'
#' table1 <- tableParams(
#' name = "simulate.csv",
#' timesList = "0,2,4,12,24",
#' variablesList = "V,Cl",
#' timeAfterDose = TRUE,
#' forSimulation = TRUE
#' )
#'
#' simParam <- NlmeSimulationParams(
#' numReplicates = 10,
#' seed = 29423,
#' simulationTables = c(table1)
#' )
#'
#' simParam <- NlmeSimulationParams(
#' numPoints = 100,
#' maxXRange = 50,
#' yVariables = "C,A1",
#' simulationTables = table1
#' )
#'
NlmeSimulationParams <-
setClass(
"NlmeSimulationParams",
representation(
numReplicates = "numeric",
seed = "numeric",
numPoints = "numeric",
maxXRange = "numeric",
yVariables = "character",
simAtObs = "logical",
simulationTables = "list"
)
)
setMethod("initialize", "NlmeSimulationParams",
function(.Object,
numReplicates = 100,
seed = 1234,
numPoints = 100,
maxXRange = 50,
yVariables = "",
simAtObs = FALSE,
simulationTables = list()) {
.Object@numReplicates <- numReplicates
.Object@seed <- seed
.Object@numPoints <- numPoints
.Object@maxXRange <- maxXRange
yVariables <- yVariables[yVariables != ""]
if (length(yVariables) == 0) {
yVariables <- ""
} else if (length(yVariables) > 1) {
yVariables <- paste0(yVariables, collapse = ", ")
}
if (missing(yVariables) &&
(!missing(numPoints) ||
!missing(maxXRange) || simAtObs)) {
warning(
"To generate individual simulation output please provide the variables for simulation"
)
}
.Object@yVariables <- yVariables
.Object@simAtObs <- simAtObs
if (!is.list(simulationTables)) {
if (inherits(simulationTables, "NlmeSimTableDef")) {
simulationTables <- list(simulationTables)
} else {
stop("simulationTables argument is not a list or NlmeSimTableDef",
" class instance.")
}
}
.Object@simulationTables <- simulationTables
.Object
})
RunVpcSimulation <- function(hostPlatform,
dataset,
params,
vpcParams,
simParams,
runInBackground = FALSE,
workingDir) {
workFlow <- "WorkFlow"
argsFile <-
GenerateControlfile(
dataset,
params,
workFlow = workFlow,
vpcOption = vpcParams,
simOption = simParams,
workingDir = workingDir
)
argsList <- list(
jobType = "GENERIC",
parallelMethod = hostPlatform@parallelMethod@method,
install_dir = hostPlatform@installationDirectory,
shared_directory = hostPlatform@sharedDirectory,
localWorkingDir = workingDir,
controlFile = names(argsFile),
NumProc = hostPlatform@numCores,
workflow_name = workFlow
)
if (is.null(vpcParams)) {
jobName <- "Simulation"
} else {
jobName <- "VPC"
}
job <- SimpleNlmeJob(
jobType = jobName,
localDir = workingDir,
remoteDir = workingDir,
host = hostPlatform,
argsList = argsList,
argsFile = names(argsFile),
workflow = workFlow,
runInBackground = runInBackground
)
.log_Execution(Model = model,
EngineParams = params,
RunMode = ifelse(jobName == "VPC", "Pred Check", "Simulation"),
Host = hostPlatform)
status <- executeJob(job)
message("\nVPC/Simulation results are ready in ", workingDir)
if (!runInBackground) {
results <- list()
if (jobName == "VPC") {
predcheckFiles <- c(
"predcheck_bql.csv",
"predcheck0.csv",
"predcheck0_cat.csv",
"predcheck1.csv",
"predcheck1_cat.csv",
"predcheck2.csv",
"predcheck2_cat.csv"
)
predcheckExist <-
file.exists(file.path(workingDir, predcheckFiles))
names(predcheckExist) <- predcheckFiles
results <- c(results, predcheckExist)
simtablesFiles <-
sapply(c(vpcParams@simulationTables), function(x) {
x@name
})
} else {
simtablesFiles <-
sapply(c(simParams@simulationTables), function(x) {
x@name
})
}
if (length(simtablesFiles) > 0) {
simtablesExist <- file.exists(file.path(workingDir, simtablesFiles))
names(simtablesExist) <- simtablesFiles
results <- c(results, simtablesExist)
}
if (params@isPopulation) {
predoutFile <- dataset@predoutFilename
predoutExist <-
file.exists(file.path(workingDir, predoutFile))
names(predoutExist) <- predoutFile
results <- c(results, predoutExist)
} else {
simoutFile <- dataset@simoutFilename
simoutExist <- file.exists(file.path(workingDir, simoutFile))
names(simoutExist) <- simoutFile
results <- c(results, simoutExist)
}
message("Loading the results")
for (TableName in unique(names(results))) {
message("Loading ", TableName, "\n")
FullTableName <- file.path(workingDir, TableName)
if (results[[TableName]]) {
if (file.info(FullTableName)["size"] > 0) {
# before assigning the list elements are just the flags to see
# whether the file exists
results[[tools::file_path_sans_ext(TableName)]] <-
data.table::fread(FullTableName, fill = TRUE)
} else {
# if file is empty, just put empty data frame
results[[tools::file_path_sans_ext(TableName)]] <-
data.table::data.table()
}
}
}
# removing empty/logical elements
results <- results[!sapply(results, is.logical)]
results
} else {
.report_BackgroundJob(hostPlatform@isLocal,
LocalWorkingDir = workingDir,
RemoteDir = hostPlatform@sharedDirectory)
status
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.