View source: R/pottwhitt.boot.R
pottwhitt.boot | R Documentation |
Generate bootstrap replicates of Potthoff-Whittinghill's statistic (function pottwhitt.stat), by means of function boot from the boot library. Notice that these functions should not be used separately but as argument statistic when calling function boot.
pottwhitt.boot is used when performing a non-parametric bootstrap.
pottwhitt.pboot is used when performing a parametric bootstrap.
pottwhitt.boot(data, i)
pottwhitt.pboot(...)
data |
A dataframe containing the data, as specified in the DCluster manual page. |
i |
Permutation generated by the bootstrap procedure |
... |
Additional arguments passed when performing a bootstrap. |
Both functions return the value of the statistic.
Potthoff, R. F. and Whittinghill, M.(1966). Testing for Homogeneity: I. The Binomial and Multinomial Distributions. Biometrika 53, 167-182.
Potthoff, R. F. and Whittinghill, M.(1966). Testing for Homogeneity: The Poisson Distribution. Biometrika 53, 183-190.
DCluster, pottwhitt, pottwhitt.stat
library(spdep)
data(nc.sids)
sids<-data.frame(Observed=nc.sids$SID74)
sids<-cbind(sids, Expected=nc.sids$BIR74*sum(nc.sids$SID74)/sum(nc.sids$BIR74))
sids<-cbind(sids, x=nc.sids$x, y=nc.sids$y)
niter<-100
#Permutation model
pw.boot<-boot(sids, statistic=pottwhitt.boot, R=niter)
plot(pw.boot)#Plot results
#Multinomial model
pw.mboot<-boot(sids, statistic=pottwhitt.pboot, sim="parametric", ran.gen=multinom.sim, R=niter)
plot(pw.mboot)#Plot results
#Poisson model
pw.pboot<-boot(sids, statistic=pottwhitt.pboot, sim="parametric", ran.gen=poisson.sim, R=niter)
plot(pw.pboot)#Plot results
#Poisson-Gamma model
pw.pgboot<-boot(sids, statistic=pottwhitt.pboot, sim="parametric", ran.gen=negbin.sim, R=niter)
plot(pw.pgboot)#Plot results
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.