Nothing
# This is R source code for function 'surfaceCluster_bandwidth', in the
# R package "DRIP".
# Date: September 07, 2017
# Creator: Yicheng Kang
# The print method for S3 class
foo <- list(cv_dataframe = data.frame(x = 1:2, y = 3:4),
bandwidth = as.integer(3), sigma = 0.0, phi0 = 1.0,
mean_std_abs = 1.0)
class(foo) <- "Surface_Cluster_Parameters"
print.Surface_Cluster_Parameters <- function(x, type = "all", ...) {
stopifnot(class(x) == "Surface_Cluster_Parameters")
if (!(type %in% c("cv_scores", "bandwidth", "sigma", "phi0", "mean_std_abs",
"all"))) {
stop("Wrong type value.")
} else {
if (type == "cv_scores") {
cat("The cross validation scores:\n")
print.data.frame(x$cv_dataframe)
}
if (type == "bandwidth") {
cat("The selected bandwidth: ", x$bandwidth, "\n")
}
if (type == "sigma") {
cat("The estimated sigma: ", x$sigma, "\n")
}
if (type == "phi0") {
cat("The estimated value of the density at 0: ", x$phi0, "\n")
}
if (type == "mean_std_abs") {
cat("The estimated mean of absolute error: ", x$mean_std_abs, "\n")
}
if (type == "all") {
cat("The cross validation scores:\n")
print.data.frame(x$cv_dataframe)
cat("The selected bandwidth: ", x$bandwidth, "\n")
cat("The estimated sigma: ", x$sigma, "\n")
cat("The estimated value of the density at 0: ", x$phi0, "\n")
cat("The estimated mean of absolute error: ", x$mean_std_abs, "\n")
}
}
}
# The summary method for the S3 class
summary.Surface_Cluster_Parameters <- function(object, ...) {
stopifnot(class(object) == "Surface_Cluster_Parameters")
cat("The selected bandwidth: ", object$bandwidth, "\n")
cat("The estimated sigma: ", object$sigma, "\n")
cat("The estimated value of the density at 0: ", object$phi0, "\n")
cat("The estimated mean of absolute error: ", object$mean_std_abs, "\n")
}
# The plot method for the S3 class
plot.Surface_Cluster_Parameters <- function(x, ...) {
stopifnot(class(x) == "Surface_Cluster_Parameters")
plot.default(x = x$cv_dataframe[, 1], y = x$cv_dataframe[, 2], type = "b",
xlab = "Bandwidth", ylab = "(Modified) CV")
}
surfaceCluster_bandwidth <- function(image, bandwidths, sig.level, sigma, phi0,
mean_std_abs, relwt = 0.5, cw = 3,
blur = FALSE){
if (!is.matrix(image)) {
stop("image data must be a matrix")
} else {
n1 <- dim(image)[1]
n2 <- dim(image)[2]
}
if (n1 != n2)
stop("image data must be a square matrix")
if (!is.numeric(bandwidths))
stop("bandwidth must be numeric")
if (any(bandwidths < 1))
stop("All bandwidths must be positive integers.")
if (!is.numeric(sig.level) || abs(sig.level - 0.5) > 0.5)
stop('sig.level must be a number between 0 and 1')
if (!is.numeric(relwt) || abs(relwt - 0.5) > 0.5)
stop("relwt must be a number between 0 and 1.")
n1 <- dim(image)[1]
z <- matrix(as.double(image), ncol = n1)
zq <- as.double(qnorm(sig.level))
if (missing(sigma) || missing(phi0) || missing(mean_std_abs)) {
jp.llk <- JPLLK_surface(z, 2:7)
fitted <- jp.llk$fitted
resid <- jp.llk$resid
sigma <- as.double(jp.llk$sigma)
std_resid <- resid / sigma
phi0 <- as.double(density(x = std_resid, bw = 1.06*n1^(-2/5),
kernel = "gaussian", n = 4, from = -1,
to = 2)$y[2])
mean_std_abs <- as.double(mean(abs(std_resid)))
}
nband <- length(bandwidths)
bandwidths <- as.integer(bandwidths)
cw <- as.integer(cw)
bandwidth_hat <- as.integer(0)
cv <- as.double(rep(0, nband))
cv_cty <- cv
cv_jump <- cv
if (blur == FALSE) {
out <- .Fortran(C_cluster_cwm_denoise_bandwidth, n = as.integer(n1 - 1),
obsImg = z, nband = nband, bandwidths = bandwidths, zq = zq,
sigma = sigma, phi0 = phi0, mean_std_abs = mean_std_abs,
cw = cw, bandwidth_hat = bandwidth_hat, cv = cv)
}
else {
out <- .Fortran(C_cluster_cwm_deblur_bandwidth, n = as.integer(n1 - 1),
obsImg = z, nband = nband, bandwidths = bandwidths, zq = zq,
sigma = sigma, phi0 = phi0, mean_std_abs = mean_std_abs,
cw = cw, relwt = as.double(relwt),
bandwidth_hat = bandwidth_hat, cv = cv, cv_jump = cv_jump,
cv_cty = cv_cty)
}
if (blur == FALSE){
cv_dataframe <- data.frame(bandwidths = bandwidths, cv = out$cv)
} else {
cv_dataframe <- data.frame(bandwidths = bandwidths, mcv = out$cv,
cv_jump = out$cv_jump, cv_cty = out$cv_cty)
}
out1 <- list(cv_dataframe = cv_dataframe, bandwidth = out$bandwidth_hat,
sigma = sigma, phi0 = phi0, mean_std_abs = mean_std_abs)
class(out1) <- "Surface_Cluster_Parameters"
return(out1)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.