inst/simulatorfunctions/simulate_directtransmission_ode.R

#' Simulation of a compartmental infectious disease transmission model illustrating different types of direct transmission
#'
#' @description  This model allows for the simulation of different direct transmission modes
#'
#' @param S : initial number of susceptibles : numeric
#' @param I : initial number of infected hosts : numeric
#' @param bd : rate of transmission for density-dependent transmission : numeric
#' @param bf : rate of transmission for frequency-dependent transmission : numeric
#' @param A : the size of the area in which the hosts are assumed to reside/interact : numeric
#' @param m : the rate of births : numeric
#' @param n : the rate of natural deaths : numeric
#' @param g : the rate at which infected hosts recover : numeric
#' @param w : the rate of waning immunity : numeric
#' @param scenario : choice between density dependent (=1) and frequency dependent (=2) transmission : numeric
#' @param tmax : maximum simulation time, units of months : numeric
#' @return This function returns the simulation result as obtained from a call
#'   to the deSolve ode solver.
#' @details A compartmental ID model with several states/compartments
#'   is simulated as a set of ordinary differential
#'   equations. The function returns the output from the odesolver as a list,
#'   with the element ts, which is a dataframe whose columns represent time,
#'   the number of susceptibles, the number of infected, and the number of
#'   recovered.
#' @section Warning:
#'   This function does not perform any error checking. So if you try to do
#'   something nonsensical (e.g. any negative values or fractions > 1),
#'   the code will likely abort with an error message
#' @examples
#'   # To run the simulation with default parameters just call this function:
#'   result <- simulate_directtransmission_ode()
#'   # To choose parameter values other than the standard one, specify them like such:
#'   result <- simulate_directtransmission_ode(S = 100, tmax = 100, A=10)
#'   # You should then use the simulation result returned from the function, like this:
#'   plot(result$ts[,"time"],result$ts[,"S"],xlab='Time',ylab='Number Susceptible',type='l')
#' @seealso The UI of the Shiny app 'DirectTransmission', which is part of this package, contains more details on the model.
#' @author Andreas Handel
#' @references See e.g. Keeling and Rohani 2008 for SIR models and the
#'   documentation for the deSolve package for details on ODE solvers
#' @export



simulate_directtransmission_ode <- function(S = 1e3, I = 1, bd = 0.01, bf = 0, A = 1, m = 0, n = 0, g = 0.1, w = 0, scenario = 1, tmax = 120)
{

  
  ############################################################
  # This function is used in the solver function and has no independent usages
  directtransmissioneq <- function(t, y, parms)
  {
    with(
      as.list(c(y,parms)), #lets us access variables and parameters stored in y and pars by name
      {
        
        
        #force of infection for different scenarios: 1 = density-dependent, 2 = frequency-dependent
        N=S+I+R
        if (scenario==1) { f=bd*I/A;}
        if (scenario==2) { f=bf*I/N;}
        
        #the ordinary differential equations - includes birth-death and waning immunity
        dS = m - n*S - f*S + w*R; #susceptibles 
        dI = f*S - g*I - n*I; #infected/infectious
        dR = g*I -n*R - w*R; #recovered
        
        list(c(dS, dI, dR))
      }
    ) #close with statement
  } #end function specifying the ODEs
  
  
  
  ############################################################
  #Start main function code
  ############################################################
  Y0 = c(S = S, I = I, R = 0);  #combine initial conditions into a vector
  dt = min(0.1, tmax / 1000); #time step for which to get results back
  timevec = seq(0, tmax, dt); #vector of times for which solution is returned (not that internal timestep of the integrator is different)
  
  
  ############################################################
  #vector of parameters which is sent to the ODE function  
  pars=c(tmax = tmax, bd = bd, bf = bf, A = A, m = m, n = n, g = g, w = w, scenario = scenario); 

  #this line runs the simulation, i.e. integrates the differential equations describing the infection process
  #the result is saved in the odeoutput matrix, with the 1st column the time, the remaining columns the model variables
  odeoutput = deSolve::lsoda(Y0, timevec, func = directtransmissioneq, parms=pars, atol=1e-12, rtol=1e-12);
  
  result = list()
  result$ts <- as.data.frame(odeoutput)
  
  return(result)
  # return(odeoutput)
}

Try the DSAIDE package in your browser

Any scripts or data that you put into this service are public.

DSAIDE documentation built on July 4, 2019, 5:04 p.m.