Logit | R Documentation |
Compute generalized logit and generalized inverse logit functions.
Logit(x, min = 0, max = 1)
LogitInv(x, min = 0, max = 1)
x |
value(s) to be transformed |
min |
lower end of logit interval |
max |
upper end of logit interval |
The generalized logit function takes values on [min, max] and
transforms them to span [-\infty, \infty ]
.
It is defined as:
y = log\left (\frac{p}{1-p} \right ) \;\;\; \; \textup{where} \; \;\; p=\frac{x-min}{max-min}
The generalized inverse logit function provides the inverse transformation:
x = p' \cdot (max-min) + min \;\;\; \; \textup{where} \; \;\; p'=\frac{exp(y)}{1+exp(y)}
Transformed value(s).
Gregory R. Warnes greg@warnes.net
logit
x <- seq(0,10, by=0.25)
xt <- Logit(x, min=0, max=10)
cbind(x,xt)
y <- LogitInv(xt, min=0, max=10)
cbind(x, xt, y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.