Nothing
# Visual assessment whether matrix Fisher samples is correctly generated or not
visual.check <- function(x, Fa) {
n <- dim(x)[3]
l <- numeric(n)
for ( i in 1:n ) l[i] <- sum( Fa * x[, , i] ) # Kent Method
plot( 1:n, l, type = "l", col = "red", cex.axis = 1.2, cex.lab = 1.2, ylab = "Log prob trace of matrix Fisher dist" )
abline(h = 20.4, lty = "solid", col = "blue")
l
}
## slightly faster
#visual.check2 <- function(x, Fa) {
# n <- dim(x)
# a <- as.vector( t( apply(x, 2, c) ) )
# a2 <- a * as.vector( t(Fa) )
# id <- rep(1:n[3], each = n[1] * n[2])
# l <- group(a2, id)
# plot( 1:n[3], l, type = "l", col = "red", cex.axis = 1.2, cex.lab = 1.2, ylab = "Log prob trace of matrix Fisher dist" )
# abline(h = 20.4, lty = "solid", col = "blue")
# l
#}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.