Nothing
#' The DGEII distribution
#'
#' @author Valentina Hurtado SepĂșlveda, \email{vhurtados@unal.edu.co}
#'
#' @description
#' The function \code{DGEII()} defines the Discrete generalized exponential distribution,
#' Second type, a two parameter
#' distribution, for a \code{gamlss.family} object to be used in GAMLSS fitting
#' using the function \code{gamlss()}.
#'
#' @param mu.link defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log).
#' @param sigma.link defines the sigma.link, with "log" link as the default for the sigma.
#'
#' @references
#' \insertRef{nekoukhou2013}{DiscreteDists}
#'
#' @importFrom Rdpack reprompt
#'
#' @seealso \link{dDGEII}.
#'
#' @details
#' The DGEII distribution with parameters \eqn{\mu} and \eqn{\sigma}
#' has a support 0, 1, 2, ... and mass function given by
#'
#' \eqn{f(x | \mu, \sigma) = (1-\mu^{x+1})^{\sigma}-(1-\mu^x)^{\sigma}}
#'
#' with \eqn{0 < \mu < 1} and \eqn{\sigma > 0}. If \eqn{\sigma=1}, the DGEII distribution
#' reduces to the geometric distribution with success probability \eqn{1-\mu}.
#'
#' Note: in this implementation we changed the original parameters
#' \eqn{p} to \eqn{\mu} and \eqn{\alpha} to \eqn{\sigma},
#' we did it to implement this distribution within gamlss framework.
#'
#' @return
#' Returns a \code{gamlss.family} object which can be used
#' to fit a DGEII distribution
#' in the \code{gamlss()} function.
#'
#' @example examples/examples_DGEII.R
#'
#' @importFrom gamlss.dist checklink
#' @importFrom gamlss rqres.plot
#' @export
DGEII <- function (mu.link="logit", sigma.link="log") {
mstats <- checklink("mu.link", "DGEII",
substitute(mu.link), c("logit", "probit", "cloglog", "cauchit"))
dstats <- checklink("sigma.link", "DGEII",
substitute(sigma.link), c("log"))
structure(list(family=c("DGEII", "Discrete generalized exponential distribution of a second type II"),
parameters=list(mu=TRUE, sigma=TRUE),
nopar=2,
type="Discrete",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
# Primeras derivadas por ahora computacionales
dldm = function(y, mu, sigma) {
dm <- gamlss::numeric.deriv(dDGEII(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.00001)
dldm <- as.vector(attr(dm, "gradient"))
dldm
},
dldd = function(y, mu, sigma) {
dd <- gamlss::numeric.deriv(dDGEII(y, mu, sigma, log=TRUE),
theta="sigma",
delta=0.00001)
dldd <- as.vector(attr(dd, "gradient"))
dldd
},
# Segundas derivadas por ahora computacionales
d2ldm2 = function(y, mu, sigma) {
dm <- gamlss::numeric.deriv(dDGEII(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.00001)
dldm <- as.vector(attr(dm, "gradient"))
d2ldm2 <- - dldm * dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2, -1e-15)
d2ldm2
},
d2ldmdd = function(y, mu, sigma) {
dm <- gamlss::numeric.deriv(dDGEII(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.00001)
dldm <- as.vector(attr(dm, "gradient"))
dd <- gamlss::numeric.deriv(dDGEII(y, mu, sigma, log=TRUE),
theta="sigma",
delta=0.00001)
dldd <- as.vector(attr(dd, "gradient"))
d2ldmdd <- - dldm * dldd
d2ldmdd <- ifelse(d2ldmdd < -1e-15, d2ldmdd, -1e-15)
d2ldmdd
},
d2ldd2 = function(y, mu, sigma) {
dd <- gamlss::numeric.deriv(dDGEII(y, mu, sigma, log=TRUE),
theta="sigma",
delta=0.00001)
dldd <- as.vector(attr(dd, "gradient"))
d2ldd2 <- - dldd * dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2, -1e-15)
d2ldd2
},
G.dev.incr = function(y, mu, sigma, pw = 1, ...) -2*dDGEII(y, mu, sigma, log=TRUE),
rqres = expression(rqres(pfun="pDGEII", type="Discrete",
ymin = 0, y = y, mu = mu, sigma = sigma)),
mu.initial = expression(mu <- rep(estim_mu_sigma_DGEII(y)[1], length(y)) ),
sigma.initial = expression(sigma <- rep(estim_mu_sigma_DGEII(y)[2], length(y)) ),
mu.valid = function(mu) all(0 < mu & mu < 1),
sigma.valid = function(sigma) all(sigma > 0),
y.valid = function(y) all(y >= 0)
),
class=c("gamlss.family", "family"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.