Nothing
      # safely truncate a flatfile dataset
# need to ensure that:
#  1. NAs are preserved
#  2. truncation doesn't cause loss of samples
safetruncate <- function(flatfile, right, left){
  is_flat <- "Sample.Label" %in% names(flatfile)
  if(is_flat){
    # check Sample.Labels don't get dropped
    sl <- unique(flatfile$Sample.Label)
  }
  # indices to keep
  find <- flatfile$distance <= right &
          flatfile$distance >= left
  if(is_flat){
    find[is.na(find)] <- TRUE
    fsl <- unique(flatfile$Sample.Label[find])
    # would we drop Sample.Labels?
    if(length(fsl) != length(sl)){
      # if so, get the ones we would drop
      sl_diff <- setdiff(sl, fsl)
      # add them to the keep list
      find[flatfile$Sample.Label %in% sl_diff] <- TRUE
      # set the observation-specific data to NA
      flatfile[flatfile$Sample.Label %in% sl_diff, ]$distance <- NA
      # if size or object columns are present set their values to NA
      if(!is.null(flatfile$object)){
        flatfile[flatfile$Sample.Label %in% sl_diff, ]$object <- NA
      }
      if(!is.null(flatfile$size)){
        flatfile[flatfile$Sample.Label %in% sl_diff, ]$size <- NA
      }
    }
  }
  # keep only these rows
  flatfile <- flatfile[find, , drop=FALSE]
  return(flatfile)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.