Nothing
elnormAltSinglyCensored.mle <-
function (x, censored, N, T1, n.cen, censoring.side, ci, ci.method = c("profile.likelihood",
"cox", "delta"), ci.type, conf.level, ci.sample.size = En,
pivot.statistic = c("z", "t"))
{
pivot.statistic <- match.arg(pivot.statistic)
enorm.list <- enormSinglyCensored.mle(x = log(x), censored = censored,
N = N, T1 = log(T1), n.cen = n.cen, censoring.side = censoring.side,
ci = ci, ci.method = "normal.approx", ci.type = ci.type,
conf.level = conf.level, pivot.statistic = pivot.statistic)
log.parameters <- enorm.list$parameters
meanlog <- log.parameters[1]
sdlog <- log.parameters[2]
mean <- exp(meanlog + sdlog^2/2)
cv <- sqrt(exp(sdlog^2) - 1)
parameters <- c(mean, cv)
names(parameters) <- c("mean", "cv")
ret.list <- list(parameters = parameters)
if (ci) {
ci.method <- match.arg(ci.method)
En <- enorm.list$ci.obj$sample.size
V <- enorm.list$var.cov.params
if (ci.method == "delta") {
lambda.vec <- c(mean, sdlog * mean)
var.mean <- lambda.vec %*% V %*% lambda.vec
ci.obj <- ci.normal.approx(theta.hat = mean, sd.theta.hat = sqrt(var.mean),
n = ci.sample.size, df = ci.sample.size - 1,
ci.type = ci.type, alpha = 1 - conf.level, lb = 0,
test.statistic = pivot.statistic)
ci.obj$parameter <- "mean"
}
else {
beta <- log(mean)
sd.beta <- sqrt(V[1, 1] + 2 * sdlog * V[1, 2] + sdlog^2 *
V[2, 2])
ci.obj <- ci.normal.approx(theta.hat = beta, sd.theta.hat = sd.beta,
n = ci.sample.size, df = ci.sample.size - 1,
ci.type = ci.type, alpha = 1 - conf.level, test.statistic = pivot.statistic)
ci.obj$limits <- exp(ci.obj$limits)
ci.obj$parameter <- "mean"
}
if (ci.method == "profile.likelihood") {
loglik.at.mle <- loglikCensored(theta = ret.list$parameters,
x = x, censored = censored, censoring.side = censoring.side,
distribution = "lnormAlt")
fcn <- function(CL, loglik.at.mle, mean.mle, cv.mle,
x, censored, censoring.side, conf.level) {
cv.mle.at.CL <- elnormAltCensored.cv.mle.at.fixed.mean(fixed.mean = CL,
mean.mle = mean.mle, cv.mle = cv.mle, x = x,
censored = censored, censoring.side = censoring.side)
(2 * (loglik.at.mle - loglikCensored(theta = c(CL,
cv.mle.at.CL), x = x, censored = censored,
censoring.side = censoring.side, distribution = "lnormAlt")) -
qchisq(conf.level, df = 1))^2
}
limits <- ci.obj$limits
names(limits) <- NULL
switch(ci.type, `two-sided` = {
LCL <- nlminb(start = limits[1], objective = fcn,
lower = .Machine$double.eps, upper = mean,
loglik.at.mle = loglik.at.mle, mean.mle = mean,
cv.mle = cv, x = x, censored = censored, censoring.side = censoring.side,
conf.level = conf.level)$par
UCL <- nlminb(start = limits[2], objective = fcn,
lower = mean, loglik.at.mle = loglik.at.mle,
mean.mle = mean, cv.mle = cv, x = x, censored = censored,
censoring.side = censoring.side, conf.level = conf.level)$par
}, lower = {
LCL <- nlminb(start = limits[1], objective = fcn,
lower = .Machine$double.eps, upper = mean,
loglik.at.mle = loglik.at.mle, mean.mle = mean,
cv.mle = cv, x = x, censored = censored, censoring.side = censoring.side,
conf.level = 1 - 2 * (1 - conf.level))$par
UCL <- Inf
}, upper = {
LCL <- 0
UCL <- nlminb(start = limits[2], objective = fcn,
lower = mean, loglik.at.mle = loglik.at.mle,
mean.mle = mean, cv.mle = cv, x = x, censored = censored,
censoring.side = censoring.side, conf.level = 1 -
2 * (1 - conf.level))$par
})
names(LCL) <- "LCL"
names(UCL) <- "UCL"
ci.obj$limits <- c(LCL, UCL)
}
ci.obj$method <- switch(ci.method, delta = "Delta", cox = "Cox",
profile.likelihood = "Profile Likelihood")
oldClass(ci.obj) <- "intervalEstimateCensored"
ret.list <- c(ret.list, list(ci.obj = ci.obj))
}
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.