inst/scripts/EPA.2009/Chapter09Examples.R

#####
# File:     Script - EPA09, Chapter 09 Examples.R
#
# Purpose:  Reproduce Examples in Chapter 9 of the EPA Guidance Document
#
#           USEPA. (2009).  "Statistical Analysis of Ground Water 
#             Monitoring Data at RCRA Facilities, Unified Guidance."
#             EPA 530-R-09-007.
#             Office of Resource Conservation and Recovery, 
#             Program Information and Implementation Division.
#             March 2009.
#
# Author:   Steven P. Millard
#
# Last
# Updated:  August 20, 2012
#####

#NOTE:  Unless otherwise noted, differences between what is shown in the
#       EPA Guidance Document and results shown here are due to the 
#       EPA Guidance Document rounding intermediate results prior to 
#       the final result.

#######################################################################################

library(EnvStats)


# Example 9-1, pp. 9-3 to 9-5
#------------------------------

stats <- summaryStats(TCE.mg.per.L ~ Well, 
	data = EPA.09.Table.9.1.TCE.df,
	combine.groups = F, 
	digits = 3, stats.in.rows = TRUE)
stats
#        Well.1 Well.2
#N       14     13    
#Mean     0.063  0.118
#SD       0.079  0.02 
#Median   0.031  0.11 
#Min      0.004  0.099
#Max      0.25   0.17 
#NA's     1      2    
#N.Total 15     15   

Min.Max.mat <- stats[c("Min", "Max"), ]
Min.Max.mat
#    Well.1 Well.2
#Min  0.004  0.099
#Max  0.250  0.170

TCE            <- EPA.09.Table.9.1.TCE.df$TCE.mg.per.L
Date           <- EPA.09.Table.9.1.TCE.df$Date
Well           <- EPA.09.Table.9.1.TCE.df$Well
Data.Qualifier <- EPA.09.Table.9.1.TCE.df$Data.Qualifier

index.Well.1.Min <- Well == "Well.1" & !is.na(TCE) & TCE == Min.Max.mat["Min", "Well.1"]
index.Well.1.Max <- Well == "Well.1" & !is.na(TCE) & TCE == Min.Max.mat["Max", "Well.1"]
index.Well.2.Min <- Well == "Well.2" & !is.na(TCE) & TCE == Min.Max.mat["Min", "Well.2"]
index.Well.2.Max <- Well == "Well.2" & !is.na(TCE) & TCE == Min.Max.mat["Max", "Well.2"]

DQ.vec <- c(paste(Data.Qualifier[index.Well.1.Min], collapse = ","), 
	paste(Data.Qualifier[index.Well.1.Max], collapse = ","),
	paste(Data.Qualifier[index.Well.2.Min], collapse = ","), 
	paste(Data.Qualifier[index.Well.2.Max], collapse = ","))
DQ.mat <- matrix(DQ.vec, 2, 2)
DQ.mat
#     [,1]  [,2]
#[1,] "J,U" "U" 
#[2,] ""    "" 

df <- data.frame(Min.Max.mat[, 1], DQ.mat[, 1], Min.Max.mat[, 2], DQ.mat[, 2])
row.names(df) <- c("Min", "Max")
names(df) <- c("Well.1.TCE", "Well.1.DQ", "Well.2.TCE", "Well.2.DQ")
df
#    Well.1.TCE Well.1.DQ Well.2.TCE Well.2.DQ
#Min      0.004       J,U      0.099         U
#Max      0.250                0.170 

Well.index <- Well == "Well.1"
ND.index   <- Data.Qualifier == "U"
NA.index   <- is.na(TCE)
windows()
plot(Date[Well.index], TCE[Well.index], type = "n", 
	ylim = c(0, max(TCE, na.rm = T)),
	xlab = "Time", ylab = "Trichloroethene (mg/L)")
points(Date[Well.index & !ND.index], TCE[Well.index & !ND.index], 
	cex = 2, pch = 16, col = "blue")
points(Date[Well.index & ND.index], TCE[Well.index & ND.index], 
	cex = 2, pch = 1, col = "blue")
lines(Date[Well.index & !NA.index], TCE[Well.index & !NA.index], 
	lwd = 2, col = "blue")

Well.index <- Well == "Well.2"
points(Date[Well.index & !ND.index], TCE[Well.index & !ND.index], 
	cex = 2, pch = 15, col = "red")
points(Date[Well.index & ND.index], TCE[Well.index & ND.index], 
	cex = 2, pch = 14, col = "red")
lines(Date[Well.index & !NA.index], TCE[Well.index & !NA.index], 
	lwd = 2, lty = 2, col = "red")

legend(Date[1], 0.25, legend = c("Well 1", "Well 2"),
	col = c("blue", "red"), lty = c(1, 2), lwd = rep(2, 2),
	pch = c(16, 15), horiz = T)

title(main = "Figure 9-1. Time Series Plot of Trichloroethene Groudwater\nfor Wells 1 and 2 from 2005-2007")

rm(TCE, Date, Well, Data.Qualifier, stats, Min.Max.mat, 
	index.Well.1.Min, index.Well.1.Max, 
	index.Well.2.Min, index.Well.2.Max, 
	DQ.vec, DQ.mat, df, Well.index, ND.index, NA.index) 


###################################################################
	

# Example 9-2, pp. 9-7 to 9-8, Using Standard Boxplot
#----------------------------------------------------
# NOTE: Instructions for producing Figure 9-2 include
#       "Step 6. Draw the whiskers from each end of the 
#       box to the furthest data point to show the 
#       full range of the data."
#
#       This is not how boxplots are conventionally drawn,
#       so instead the standard boxplot is drawn here, where
#       the lower whisker extends to the smallest value within
#       1.5 x IQR of the 25th Percentile and the upper whisker
#       extends to to the largest value within 1.5 x IQR of 
#       the 75th Percentile.
#
#       To produce a boxplot with whiskers that exetend to
#       the extreme values, set the argument range=0 in the
#       call to the boxplot() function.

stats <- summaryStats(TCE.mg.per.L ~ Well, 
	data = EPA.09.Table.9.1.TCE.df,
	combine.groups = F, digits = 3, stats.in.rows = TRUE)
stats
#        Well.1 Well.2
#N       14     13    
#Mean     0.063  0.118
#SD       0.079  0.02 
#Median   0.031  0.11 
#Min      0.004  0.099
#Max      0.25   0.17 
#NA's     1      2    
#N.Total 15     15

stats.no.ND <- summaryStats(TCE.mg.per.L ~ Well, 
	data = EPA.09.Table.9.1.TCE.df, 
	subset = Data.Qualifier != "U",
	combine.groups = F, digits = 3, stats.in.rows = TRUE)

stats.no.ND
#        Well.1 Well.2
#N       11     10    
#Mean     0.079  0.124
#SD       0.082  0.019
#Median   0.05   0.118
#Min      0.004  0.107
#Max      0.25   0.17 
#NA's     1      2    
#N.Total 12     12

windows()
box.list <- boxplot(TCE.mg.per.L ~ Well, data = EPA.09.Table.9.1.TCE.df,
	boxwex = 0.3, varwidth = T,
	ylab = "Trichloroethene (mg/L)",
	main = "Figure 9-2. Boxplots of Trichloroethene Data for Wells 1 & 2")

points(1:2, stats["Mean",], pch = 8, cex = 0.7)

TCE            <- EPA.09.Table.9.1.TCE.df$TCE.mg.per.L
Well           <- EPA.09.Table.9.1.TCE.df$Well
limits <- sapply(split(TCE, Well), 
	function(x) enorm(x, ci=T)$interval$limits)
#Warning messages:
#1: In is.not.finite.warning(x) :
#  There were 1 nonfinite values in x : 1 NA's
#2: In enorm(x, ci = T) : 1 observations with NA/NaN/Inf in 'x' removed.
#3: In is.not.finite.warning(x) :
#  There were 2 nonfinite values in x : 2 NA's
#4: In enorm(x, ci = T) : 2 observations with NA/NaN/Inf in 'x' removed.

points(1:2, limits["UCL", ], pch = 94, cex = 1.2) 
points(1:2, limits["LCL", ], pch = 118) 

abline(h = 0.23, lty = 3)
text(0.5, 0.24, "PRG = 0.23 mg/L", adj = 0, cex = 0.8)

mtext(paste("FOD =", stats.no.ND["N", ], "/", stats["N", ]), 
	at = 1:2, side = 1, line = 3)

legend(1.25, 0.07, c("outlier > 1.5 x IQR", "95% UCL", "Mean", "95% LCL"), 
	pch = c(1, 94, 8, 118), pt.cex = c(1, 1.2, 0.7, 1),
	bty = "n")

rm(TCE, Well, stats, stats.no.ND, box.list, limits)


###################################################################


# Example 9-3, pp. 9-9 to 9-12
#-----------------------------

TCE  <- EPA.09.Table.9.1.TCE.df$TCE.mg.per.L
Well <- EPA.09.Table.9.1.TCE.df$Well

#####
# Frequency Histograms
#####

##
# Variation 1: Create histograms using the hist() function
windows()
par(mfrow = c(2, 1), mar = c(5, 4, 0, 1) + 0.1, oma = c(0, 0, 3, 0))
hist(TCE[Well == "Well.1"], col = "blue", ylim = c(0, 10),
	xlab = "Trichloroethene (mg/L) in Well 1", 
	ylab = "Frequency", main = "")
hist(TCE[Well == "Well.2"], col = "blue", ylim = c(0, 8),
	xlab = "Trichloroethene (mg/L) in Well 2", 
	ylab = "Frequency", main = "")
mtext("Figure 9-3. Frequency Histrograms of Trichloroethene by Well.", 
	outer=T, line = 1, cex = 1.25, font = 2)

# Variation 2: Force the x-axis to be the same for each histogram
windows()
xlim <- range(TCE, na.rm = T)
par(mfrow = c(2, 1), mar = c(5, 4, 0, 1) + 0.1, oma = c(0, 0, 3, 0))
hist(TCE[Well == "Well.1"], col = "blue", 
	xlim = xlim, ylim = c(0, 10),
	xlab = "Trichloroethene (mg/L) in Well 1", 
	ylab = "Frequency", main = "")
hist(TCE[Well == "Well.2"], col = "blue", 
	xlim = xlim, ylim = c(0, 8),
	xlab = "Trichloroethene (mg/L) in Well 2", 
	ylab = "Frequency", main = "")
mtext("Figure 9-3. Frequency Histrograms of Trichloroethene by Well.", 
	outer=T, line = 1, cex = 1.25, font = 2)


##
# Variation 3: Create histograms using the function 
# histogram in the lattice library.

library(lattice)
windows()
histogram(~ TCE.mg.per.L | Well, data = EPA.09.Table.9.1.TCE.df, 
	type = "count", layout = c(1, 2), 
	xlab = "Trichloroethene (mg/L)", ylab = "Frequency",
	main = "Figure 9-3. Frequency Histrograms of Trichloroethene by Well.")
	


#####
# Relative Frequency Histograms
#####

##
# Variation 1: Create relative frequency histograms using the hist() function
windows()
par(mfrow = c(2, 1), mar = c(5, 4, 0, 1) + 0.1, oma = c(0, 0, 3, 0))
hist(TCE[Well == "Well.1"], freq = F, 
	col = "blue", ylim = c(0, 15), 
	xlab = "Trichloroethene (mg/L) in Well 1", 
	ylab = "Relative Frequency (%)", main = "")
hist(TCE[Well == "Well.2"], freq = F, 
	col = "blue", ylim = c(0, 25),
	xlab = "Trichloroethene (mg/L) in Well 2", 
	ylab = "Relative Frequency (%)", main = "")
mtext("Figure 9-4. Relative Frequency Histrograms of Trichloroethene by Well.", 
	outer=T, line = 1, cex = 1.25, font = 2)

##
# Variation 2: Force the x-axis to be the same for each histogram
windows()
xlim <- range(TCE, na.rm = T)
par(mfrow = c(2, 1), mar = c(5, 4, 0, 1) + 0.1, oma = c(0, 0, 3, 0))
hist(TCE[Well == "Well.1"], freq = F, col = "blue", 
	xlim = xlim, ylim = c(0, 15),
	xlab = "Trichloroethene (mg/L) in Well 1", 
	ylab = "Relative Frequency (%)", main = "")
hist(TCE[Well == "Well.2"], freq = F, col = "blue", 
	xlim = xlim, ylim = c(0, 25),
	xlab = "Trichloroethene (mg/L) in Well 2", 
	ylab = "Relative Frequency (%)", main = "")
mtext("Figure 9-4. Relative Frequency Histrograms of Trichloroethene by Well.", 
	outer=T, line = 1, cex = 1.25, font = 2)

##
# Variation 3: Create relative frequency histograms using the function 
#              histogram in the lattice library.

library(lattice)
windows()
histogram(~ TCE.mg.per.L | Well, data = EPA.09.Table.9.1.TCE.df, 
	type = "percent", layout = c(1, 2), 
	xlab = "Trichloroethene (mg/L)", ylab = "Relative Frequency (%)",
	main = "Figure 9-4. Relative Frequency Histrograms of Trichloroethene by Well.")

rm(TCE, Well, xlim)


###################################################################


# Example 9-4, pp. 9-13 to 9-14
#------------------------------

As    <- EPA.09.Table.9.3.df$Arsenic.mg.per.L
As.DQ <- EPA.09.Table.9.3.df$Arsenic.Data.Qualifier

Hg    <- EPA.09.Table.9.3.df$Mercury.mg.per.L
Hg.DQ <- EPA.09.Table.9.3.df$Mercury.Data.Qualifier

ND.ind <- rep("", length(As))
ND.ind[As.DQ != "U" & Hg.DQ != "U"] <- "both detected"
ND.ind[As.DQ == "U" & Hg.DQ == "U"] <- "both non-detects"
ND.ind[As.DQ == "U" & Hg.DQ != "U"] <- "arsenic non-detect only"
ND.ind[As.DQ != "U" & Hg.DQ == "U"] <- "mercury non-detect only"
ND.ind <- factor(ND.ind, levels = c("both detected", 
	"both non-detects", "arsenic non-detect only", 
	"mercury non-detect only"))

# Summary statistics for Arsenic, setting non-detects to detection limit
summaryStats(As)
#    N Mean  SD Median Min Max
#As 15  0.1 0.1    0.1   0 0.3

# Summary statistics for Mercury, setting non-detects to detection limit
summaryStats(Hg)
#    N Mean  SD Median Min Max NA's n.Total
#Hg 14  0.1 0.1    0.1   0 0.3    1      15


# NOTE: there is one (As,Hg) pair (0.01, 0.02) where both are detects
#       and      one (As,Hg) pair (0.01, 0.02) where both are non-detects
#       so you can't use a solid symbol for one or both or they will
#       not both show up!

lim <- range(As, Hg, na.rm = T)
pch.vec <- c(1, 4, 6, 2)
col.vec <- c("black", "red", "blue", "blue")
levels.ND.ind <- levels(ND.ind)
n.levels <- length(levels(ND.ind))
windows()
plot(As, Hg, type = "n", xlim = lim, ylim = lim, 
	xlab = "Arsenic (mg/L)", ylab = "Mercury (mg/L)",
	main = "Figure 9-5. Sctterplot of Arsenic with Mercury from Well 3")
for(i in 1:n.levels) {
	index <- ND.ind == levels.ND.ind[i]
	points(As[index], Hg[index], lwd = 2,
		pch = pch.vec[i], col = col.vec[i])
}
abline(lm(Hg ~ As))
mtext(paste("Pearson Correlation =", 
	round(cor(As, Hg, use="complete.obs"), 2)), line = 0.5)

legend(0.01, 0.3, levels.ND.ind, pch = pch.vec, 
	col = col.vec, lty = 0, lwd = 2, bty = "n")

rm(As, As.DQ, Hg, Hg.DQ, ND.ind, lim, 
	pch.vec, col.vec, levels.ND.ind, n.levels,
	i, index)


###################################################################


# Example 9-5, pp. 9-15 to 9-16
#------------------------------
	

As    <- EPA.09.Table.9.3.df$Arsenic.mg.per.L
As.DQ <- EPA.09.Table.9.3.df$Arsenic.Data.Qualifier

Hg    <- EPA.09.Table.9.3.df$Mercury.mg.per.L
Hg.DQ <- EPA.09.Table.9.3.df$Mercury.Data.Qualifier

Sr    <- EPA.09.Table.9.3.df$Strontium.mg.per.L
Sr.DQ <- EPA.09.Table.9.3.df$Strontium.Data.Qualifier


lim <- range(As, Hg, Sr, na.rm = T)
pch.vec <- c(1, 4, 6, 2)

cor.vec <- rep(as.numeric(NA), 3)

# First plot Hg vs. As

ND.ind <- rep("", length(As))
ND.ind[As.DQ != "U" & Hg.DQ != "U"] <- "both detected"
ND.ind[As.DQ == "U" & Hg.DQ == "U"] <- "both non-detects"
ND.ind[As.DQ == "U" & Hg.DQ != "U"] <- "As non-detect only"
ND.ind[As.DQ != "U" & Hg.DQ == "U"] <- "Hg non-detect only"
ND.ind <- factor(ND.ind, levels = c("both detected", 
	"both non-detects", "As non-detect only", 
	"Hg non-detect only"))

levels.ND.ind <- levels(ND.ind)
n.levels <- length(levels(ND.ind))
windows()
plot(As, Hg, type = "n", xlim = lim, ylim = lim, 
	xlab = "mg/L", ylab = "mg/L",
	main = "Figure 9-6. Coded Sctterplot of Well 3 Arsenic, Mercury, and Strontium")
for(i in 1:n.levels) {
	index <- ND.ind == levels.ND.ind[i]
	points(As[index], Hg[index], lwd = 2,
		pch = pch.vec[i], col = "blue")
}
abline(lm(Hg ~ As), lwd = 2, col = "blue")
cor.vec[1] <- round(cor(As, Hg, use="complete.obs"), 2)


# Now plot Sr vs. As

ND.ind <- rep("", length(As))
ND.ind[As.DQ != "U" & Sr.DQ != "U"] <- "both detected"
ND.ind[As.DQ == "U" & Sr.DQ == "U"] <- "both non-detects"
ND.ind[As.DQ == "U" & Sr.DQ != "U"] <- "As non-detect only"
ND.ind[As.DQ != "U" & Sr.DQ == "U"] <- "Sr non-detect only"
ND.ind <- factor(ND.ind, levels = c("both detected", 
	"both non-detects", "As non-detect only", 
	"Sr non-detect only"))

levels.ND.ind <- levels(ND.ind)
n.levels <- length(levels(ND.ind))

for(i in 1:n.levels) {
	index <- ND.ind == levels.ND.ind[i]
	points(As[index], Sr[index], lwd = 2,
		pch = pch.vec[i], col = "red")
}
abline(lm(Sr ~ As), lwd = 2, col = "red")
cor.vec[2] <- round(cor(As, Sr, use="complete.obs"), 2)


# Now plot Sr vs. Hg

ND.ind <- rep("", length(Hg))
ND.ind[Hg.DQ != "U" & Sr.DQ != "U"] <- "both detected"
ND.ind[Hg.DQ == "U" & Sr.DQ == "U"] <- "both non-detects"
ND.ind[Hg.DQ == "U" & Sr.DQ != "U"] <- "Hg non-detect only"
ND.ind[Hg.DQ != "U" & Sr.DQ == "U"] <- "Sr non-detect only"
ND.ind <- factor(ND.ind, levels = c("both detected", 
	"both non-detects", "Hg non-detect only", 
	"Sr non-detect only"))

levels.ND.ind <- levels(ND.ind)
n.levels <- length(levels(ND.ind))

for(i in 1:n.levels) {
	index <- ND.ind == levels.ND.ind[i]
	points(Hg[index], Sr[index], lwd = 2,
		pch = pch.vec[i], col = "green")
}
abline(lm(Sr ~ Hg), lwd = 2, col = "green")
cor.vec[3] <- round(cor(As, Sr, use="complete.obs"), 2)


legend(0.01, 0.3, c(paste(
	"Mercury (Y) vs. Arsenic (X), Cor =", 
		cor.vec[1]),
	paste("Strontium (Y) vs. Arsenic (X), Cor =", 
		cor.vec[2]), 
	paste("Strontium (Y) vs. Mercury (X), Cor =",
		cor.vec[3])
	),  
	col = c("blue", "red", "green"), pch = 1, 
	lty = 1, cex = 0.8, lwd = 2, bty = "n")


rm(As, As.DQ, Hg, Hg.DQ, Sr, Sr.DQ, 
	ND.ind, lim, 
	pch.vec, levels.ND.ind, n.levels,
	i, index, cor.vec)



# NOTE:  It is easier to see what is going on by using 
#        matrix scatterplots, rather than
#        a coded scatterplot.

# Matrix scatterplots with:
# non-detects plotted at detection limit, 
# duplitcate points overlaid, 
# no regression lines, and
# no special symbols for non-detects.

dum.df <- EPA.09.Table.9.3.df[, 
	c("Arsenic.mg.per.L", "Mercury.mg.per.L", "Strontium.mg.per.L")]
names(dum.df) <- c("As (mg/L)", "Hg (mg/L)", "Sr (mg/L)")

lim <- range(dum.df, na.rm = T)

windows()
pairs(dum.df, xlim = lim, ylim = lim)


# Matrix scatterplots with:
# non-detects plotted at detection limit, 
# duplitcate points jittered, 
# regression lines included, but
# no special symbols for non-detects,
# points plotted in upper panels,
# Pearson correlations shown in lower panels.

panel <- function(x, y, factor.x = 10, factor.y = 10, ...) {
	points.w.dups(x, y, 
		factor.x = factor.x, 
		factor.y = factor.y, ...)
	abline(lm(y~x))
}

panel.cor <- function(x, y, digits=2, prefix="Cor = ", 
	cex = 2 * par("cex"), ...)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r <- cor(x, y, use = "pairwise.complete.obs")
    txt <- format(c(r, 0.123456789), digits=digits)[1]
    txt <- paste(prefix, txt, sep="")
    text(0.5, 0.5, txt, cex = cex)
}


windows()
set.seed(233)
pairs(dum.df, upper.panel = panel, 
	lower.panel = panel.cor, 
	xlim = lim, ylim = lim)


rm(dum.df, panel, panel.cor, lim)


#################################################################


# Example 9-6, pp. 9-17 to 9-20
#------------------------------

windows()
qqPlot(EPA.09.Table.9.4.nickel.vec, ylim = c(0, 1000),
	plot.pos.con = 0, add.line = T,
	ylab = "Nickel Concentration (ppb)",
	main = "Figure 9.7.  Normal Probability Plot")

windows()
qqPlot(EPA.09.Table.9.4.nickel.vec, dist = "lnorm", 
	plot.pos.con = 0, add.line = T,
	ylab = "log(nickel) Concentration log(ppb)",
	main = "Figure 9.8.  Probability Plot of Log Transformed Nickel Data")

Try the EnvStats package in your browser

Any scripts or data that you put into this service are public.

EnvStats documentation built on Sept. 11, 2024, 6:03 p.m.