Nothing
### This file is part of 'EvaluateCore' package for R.
### Copyright (C) 2018-2022, ICAR-NBPGR.
#
# EvaluateCore is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# EvaluateCore is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.r-project.org/Licenses/
#' Distance Measures
#'
#' Compute average Entry-to-nearest-entry distance
#' (\mjteqn{E\textrm{-}EN}{E\text{-}EN}{E-EN}),
#' Accession-to-nearest-entry distance
#' (\mjteqn{A\textrm{-}EN}{E\text{-}EN}{A-EN}) and
#' Entry-to-entry distance (\mjteqn{E\textrm{-}E}{E\text{-}EN}{E-E})
#' \insertCite{odong_quality_2013}{EvaluateCore}
#' to evaluate a core set (CS) selected from an entire collection (EC).
#' \loadmathjax
#'
# #' This function is a wrapper around the
# #' \code{\link[corehunter]{evaluateCore}}
# #' function of the \code{\link[corehunter]{corehunter}} package.
#'
#' @inheritParams snk.evaluate.core
#' @inheritParams chisquare.evaluate.core
#' @param d A distance matrix of class "\code{dist}" with individual names in
#' the \code{names} column in {data} as labels. If \code{NULL} (default),
#' then a distance matrix is computed using Gower's metric.
#' \insertCite{gowerGeneralCoefficientSimilarity1971}{EvaluateCore}.
#'
#' @return A data frame with the average values of
#' \mjteqn{E\textrm{-}EN}{E\text{-}EN}{E-EN},
#' \mjteqn{A\textrm{-}EN}{E\text{-}EN}{A-EN} and
#' \mjteqn{E\textrm{-}E}{E\text{-}EN}{E-E}.
#'
#' @references
#'
#' \insertAllCited{}
#'
#' @seealso \code{\link[corehunter]{evaluateCore}}
#'
# #' @importFrom corehunter evaluateCore
# #' @importFrom corehunter phenotypes
# #' @importFrom corehunter objective
#' @importFrom cluster daisy
#' @export
#'
#' @examples
#'
#' data("cassava_CC")
#' data("cassava_EC")
#'
#' ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
#' ec$genotypes <- as.character(ec$genotypes)
#' rownames(ec) <- NULL
#'
#' core <- rownames(cassava_CC)
#'
#' quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
#' "ARSR", "SRDM")
#' qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
#' "ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
#' "PSTR")
#'
#' ec[, qual] <- lapply(ec[, qual],
#' function(x) factor(as.factor(x)))
#'
#' dist.evaluate.core(data = ec, names = "genotypes", quantitative = quant,
#' qualitative = qual, selected = core)
#'
#' \donttest{
#' ####################################
#' # Compare with corehunter
#' ####################################
#'
#' library(corehunter)
#' # Prepare phenotype dataset
#' dtype <- c(rep("RD", length(quant)),
#' rep("NS", length(qual)))
#' rownames(ec) <- ec[, "genotypes"]
#' ecdata <- corehunter::phenotypes(data = ec[, c(quant, qual)],
#' types = dtype)
#'
#' # Compute average distances
#' EN <- evaluateCore(core = rownames(cassava_CC), data = ecdata,
#' objective = objective("EN", "GD"))
#' AN <- evaluateCore(core = rownames(cassava_CC), data = ecdata,
#' objective = objective("AN", "GD"))
#' EE <- evaluateCore(core = rownames(cassava_CC), data = ecdata,
#' objective = objective("EE", "GD"))
#' EN
#' AN
#' EE
#' }
#'
dist.evaluate.core <- function(data, names, quantitative, qualitative,
selected, d = NULL) {
if (missing(quantitative)) {
quantitative <- NULL
}
if (missing(qualitative)) {
qualitative <- NULL
}
if (length(c(quantitative, qualitative)) == 1) {
stop("Only one trait specified")
}
# Checks
checks.evaluate.core(data = data, names = names,
quantitative = quantitative,
qualitative = qualitative,
selected = selected)
if (any(c("tbl_dataf", "tbl") %in% class(data))) {
warning('"data" is of type tibble\nCoercing to data frame')
data <- as.data.frame(data)
}
# traits <- c(quantitative, qualitative)
# # quantitative (RD); qualitative(NS)
# dtype <- c(rep("RD", length(quantitative)),
# rep("NS", length(qualitative)))
# dataf <- data[, c(names, traits)]
# rownames(dataf) <- dataf[, names]
if (!is.null(d)) {
# check if d is a distance matrix
if (!("dist" %in% class(d))) {
stop('Distance matrix "d" is not an object of class "dist".')
}
dsize <- as.integer(attr(d, "Size"))
if (nrow(data) != dsize) {
stop('Dimensions of distance matrix "d" and "data" do not match.')
}
if (!(all(labels(d) %in% data[, names]) &
all(data[, names] %in% labels(d)))) {
stop('Labels of distance matrix "d" and "data" do not match.')
}
} else {
rownames(data) <- data[, names]
d <- cluster::daisy(data[, c(quantitative, qualitative)],
metric = "gower")
}
# # Prep phenotype
# dataf <- corehunter::phenotypes(data = dataf[, c(quantitative,
# qualitative)],
# types = dtype)
# # Compute average distances
# EN <- evaluateCore(core = selected, data = dataf,
# objective = objective("EN", "GD"))
# AN <- evaluateCore(core = selected, data = dataf,
# objective = objective("AN", "GD"))
# EE <- evaluateCore(core = selected, data = dataf,
# objective = objective("EE", "GD"))
dmat <- as.matrix(d)
selind <- which(rownames(dmat) %in% selected)
subdist <- dmat[selind, selind]
#EE
EE <- mean(subdist[upper.tri(subdist)])
#EN
EN <- mean(apply(subdist, 1, FUN = function(x) {min(x[x > 0])}))
#AN
subdist2 <- dmat[-selind, selind]
dsize <- as.integer(attr(d, "Size"))
AN <- sum(apply(subdist2, 1, FUN = function(x) {min(x[x > 0])})) / dsize
outdf <- data.frame(`Average distance` = c("E-NE", "A-NE", "E-E"),
`Value` = c(EN, AN, EE))
return(outdf)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.