diagnostics | R Documentation |
This function displays traceplots of the scaling parameter from the proposal distribution of the adaptive MCMC scheme and the associated acceptance probability.
diagnostics(mcmc)
mcmc |
An output of the |
When mcmc
is the output of fGEV
, this corresponds to a
marginal estimation. In this case, diagnostics
displays:
A trace plot of \tau
, the scaling parameter in the
multivariate normal proposal, which directly affects the acceptance rate.
A trace plot of the acceptance probabilities of the proposal parameter values.
When mcmc
is the output of fExtDep.np
, this corresponds
to an estimation of the dependence structure following Algorithm 1 in
Beranger et al. (2021).
If the margins are jointly estimated with the dependence (steps 1 and 2),
diagnostics
provides trace plots of the corresponding scaling
parameters (\tau_1, \tau_2
) and acceptance
probabilities.
For the dependence structure (step 3), a trace plot of the polynomial
order \kappa
is displayed, along with the associated
acceptance probability.
A graph of traceplots of the scaling parameter from the proposal distribution of the adaptive MCMC scheme and the associated acceptance probability.
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
Beranger, B., Padoan, S. A. and Sisson, S. A. (2021). Estimation and uncertainty quantification for extreme quantile regions. Extremes, 24, 349–375.
fExtDep.np
##################################################
### Example - Pollution levels in Milan, Italy ###
##################################################
## Not run:
# Dependence structure only
data(MilanPollution)
data <- Milan.winter[, c("NO2", "SO2")]
data <- as.matrix(data[complete.cases(data), ])
# Threshold
u <- apply(data, 2, function(x) quantile(x, prob = 0.9, type = 3))
# Hyperparameters
hyperparam <- list(mu.nbinom = 6, var.nbinom = 8, a.unif = 0, b.unif = 0.2)
# Standardise data to univariate Frechet margins
f1 <- fGEV(data = data[, 1], method = "Bayesian", sig0 = 0.1, nsim = 5e4)
diagnostics(f1)
burn1 <- 1:30000
gev.pars1 <- apply(f1$param_post[-burn1, ], 2, mean)
sdata1 <- trans2UFrechet(data = data[, 1], pars = gev.pars1, type = "GEV")
f2 <- fGEV(data = data[, 2], method = "Bayesian", sig0 = 0.1, nsim = 5e4)
diagnostics(f2)
burn2 <- 1:30000
gev.pars2 <- apply(f2$param_post[-burn2, ], 2, mean)
sdata2 <- trans2UFrechet(data = data[, 2], pars = gev.pars2, type = "GEV")
sdata <- cbind(sdata1, sdata2)
# Bayesian estimation using Bernstein polynomials
pollut1 <- fExtDep.np(method = "Bayesian", data = sdata,
u = TRUE, mar.fit = FALSE, k0 = 5,
hyperparam = hyperparam, nsim = 5e4)
diagnostics(pollut1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.