rExtDepSpat | R Documentation |
This function generates realisations from a max-stable process.
rExtDepSpat(n, coord, model="SCH", cov.mod = "whitmat", grid = FALSE,
control = list(), cholsky = TRUE, ...)
n |
An integer indictaing the number of observations. |
coord |
A vector or matrix corresponding to the coordinates of locations where the processes is simulated. Each row corresponds to a location. |
model |
A character string indicating the max-stable model. See |
cov.mod |
A character string indicating the correlation function function. See |
grid |
A logical value; |
control |
A named list with arguments |
cholsky |
A logical value; if |
... |
The parameters of the max-stable model. See |
This function extends the rmaxstab
function from the SpatialExtremes
package in two ways:
The extremal skew-t model is included.
The function returns the hitting scenarios, i.e. the index of which 'storm' (or process) led to the maximum value for each location and observation.
The max-stable models available in this procedure and the specifics are:
when model='SMI'
, does not require cov.mod
. If coord
is univariate then var
needs to be specified and for higher dimensions covariance parameters should be provided such as cov11
, cov12
, cov22
, etc.
when model='SCH'
, requires cov.mod='whitmat'
, 'cauchy'
, 'powexp'
or 'bessel'
depending on the correlation family. Parameters 'nugget'
, 'range'
and 'smooth'
should be specified.
when model='ET'
, requires cov.mod='whitmat'
, 'cauchy'
, 'powexp'
or 'bessel'
depending on the correlation family. Parameters 'nugget'
, 'range'
, 'smooth'
and 'DoF'
should be specified.
when model='EST'
, requires cov.mod='whitmat'
, 'cauchy'
, 'powexp'
or 'bessel'
depending on the correlation family. Parameters 'nugget'
, 'range'
, 'smooth'
, 'DoF'
, 'alpha'
(a vector of length 3
) and 'acov1'
and 'acov2'
(both vector of length the number of locations) should be specified. The skewness vector is defined as \alpha = \alpha_0 + \alpha_1 \textrm{acov1} + \alpha_2 \textrm{acov2}
.
when model='GG'
, requires cov.mod='whitmat'
, 'cauchy'
, 'powexp'
or 'bessel'
depending on the correlation family. Parameters 'sig2'
, 'nugget'
, 'range'
and 'smooth'
should be specified.
when model='BR'
, does not require cov.mod
. Parameters 'range'
and 'smooth'
should be specified.
For the argument control
, details of the list components are as follows:
is NULL
by default, meaning that the function tries to find the most appropriate simulation technique. Current simulation techniques are a direct approach, i.e. Cholesky decomposition of the covariance matrix, the turning bands and the circular embedding methods. Note that for the extremal skew-t model it can only take value 'exact'
or 'direct'
;
if NULL
then it is set to 1000
;
if NULL
then it is set to reasonable values - for example 3.5
for the Schlather model.
A list made of
A (n \times d)
matrix containing n
observations at d
locations, from the specified max-stable model.
A (n \times d)
matrix containing the hitting scenarios for each observations. On each row, elements with the same integer value indicate that the maxima at these two locations is coming from the same 'storm' or process.
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
Beranger, B., Stephenson, A. G. and Sisson, S.A. (2021) High-dimensional inference using the extremal skew-t process Extremes, 24, 653-685.
fExtDepSpat
# Generate some locations
set.seed(1)
lat <- lon <- seq(from=-5, to=5, length=20)
sites <- as.matrix(expand.grid(lat,lon))
# Example using the extremal-t
set.seed(2)
z <- rExtDepSpat(1, sites, model="ET", cov.mod="powexp", DoF=1,
nugget=0, range=3, smooth=1.5,
control=list(method="exact"))
fields::image.plot(lat, lon, matrix(z$vals,ncol=20) )
# Example using the extremal skew-t
set.seed(3)
z2 <- rExtDepSpat(1, sites, model="EST", cov.mod="powexp", DoF=5,
nugget=0, range=3, smooth=1.5, alpha=c(0,5,5),
acov1=sites[,1], acov2=sites[,2],
control=list(method="exact"))
fields::image.plot(lat, lon, matrix(z2$vals,ncol=20) )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.