madogram | R Documentation |
Computes a non-parametric estimate of the Pickands dependence function
A(w)
for multivariate data, based on the madogram estimator.
madogram(w, data, margin = c("emp", "est", "exp", "frechet", "gumbel"))
w |
An |
data |
An |
margin |
A string indicating the type of marginal distributions
( |
The estimation procedure is based on the madogram as proposed in Marcon et al. (2017). The madogram is defined by
\nu(\mathbf{w}) =
\mathbb{E}\left(
\max_{i=1,\dots,d}\left\lbrace F_i^{1/w_i}(X_i) \right\rbrace
- \frac{1}{d}\sum_{i=1}^d F_i^{1/w_i}(X_i)
\right),
where 0 < w_i < 1
and
w_d = 1 - (w_1 + \ldots + w_{d-1})
.
Each row of the design matrix w
is a point in the
d
-dimensional unit simplex.
If X
is a d
-dimensional max-stable random vector with exponent
measure V(\mathbf{x})
and Pickands dependence function
A(\mathbf{w})
, then
\nu(\mathbf{w}) =
\frac{V(1/w_1,\ldots,1/w_d)}{1 + V(1/w_1,\ldots,1/w_d)} - c(\mathbf{w}),
where
c(\mathbf{w}) = \frac{1}{d}\sum_{i=1}^d \frac{w_i}{1+w_i}.
From this, it follows that
V(1/w_1,\ldots,1/w_d) =
\frac{\nu(\mathbf{w}) + c(\mathbf{w})}{1 - \nu(\mathbf{w}) - c(\mathbf{w})},
and
A(\mathbf{w}) =
\frac{\nu(\mathbf{w}) + c(\mathbf{w})}{1 - \nu(\mathbf{w}) - c(\mathbf{w})}.
Marginal treatment:
"emp"
: empirical transformation of the marginals,
"est"
: maximum-likelihood fitting of the GEV distributions,
"exp"
, "frechet"
, "gumbel"
: parametric GEV
theoretical distributions.
A numeric vector of estimates of the Pickands dependence function.
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017). Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. Journal of Statistical Planning and Inference, 183, 1–17.
Naveau, P., Guillou, A., Cooley, D. and Diebolt, J. (2009). Modelling pairwise dependence of maxima in space. Biometrika, 96(1), 1–17.
beed
, beed.confband
x <- simplex(2)
data <- evd::rbvevd(50, dep = 0.4, model = "log", mar1 = c(1,1,1))
Amd <- madogram(x, data, "emp")
Amd.bp <- beed(data, x, 2, "md", "emp", 20, plot = TRUE)
lines(x[,1], Amd, lty = 1, col = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.