pExtDep | R Documentation |
Evaluate the distribution function of parametric multivariate extreme-value distributions and the angular probability distribution represented through Bernstein polynomials.
pExtDep(q, type, method = "Parametric", model, par, plot = TRUE,
main, xlab, cex.lab, cex.axis, lwd, ...)
q |
A vector or matrix of quantiles. |
type |
A character string: |
method |
A character string: |
model |
A character string with the model name:
|
par |
A vector or matrix of parameters for the model. If a matrix, rows correspond to different parameter sets. |
plot |
Logical; if |
main , xlab , cex.lab , cex.axis , lwd |
Graphical arguments passed to |
... |
Additional graphical arguments passed to |
When method = "Parametric"
, the distribution function is available in 2 or 3 dimensions only.
See dim_ExtDep
for the correct length of the parameter vector.
If type = "lower"
, the cumulative distribution function is computed:
G(x) = P(X \leq x), \quad x \in \mathbb{R}^d, \; d=2,3.
If type = "inv.lower"
, the survival function is computed:
1 - G(x) = P(\exists i : X_i > x_i).
If type = "upper"
, the joint probability of exceedance is computed:
P(X \geq x).
When method = "NonParametric"
, the distribution function is available in 2 dimensions only.
If par
is a matrix and plot = TRUE
, a histogram of the probabilities is displayed across parameter sets.
A kernel density estimator, 2.5\%, 50\%, 97.5\%
quantiles (crosses) and the mean (dot) are added.
If par
is a vector: returns a scalar (if q
is a vector) or a vector of length nrow(q)
(if q
is a matrix).
If par
is a matrix: returns a vector of length nrow(par)
(if q
is a vector)
or a matrix with nrow(par)
rows and nrow(q)
columns (if q
is a matrix).
Simone Padoan simone.padoan@unibocconi.it,
https://faculty.unibocconi.it/simonepadoan/
Boris Beranger borisberanger@gmail.com,
https://www.borisberanger.com
Beranger, B. and Padoan, S.A. (2015).
Extreme Value Modeling and Risk Analysis: Methods and Applications.
Chapman & Hall/CRC.
Beranger, B., Padoan, S.A. and Sisson, S.A. (2017).
Models for extremal dependence derived from skew-symmetric families.
Scandinavian Journal of Statistics, 44(1), 21–45.
Husler, J. and Reiss, R.-D. (1989).
Maxima of normal random vectors: between independence and complete dependence.
Statistics and Probability Letters, 7, 283–286.
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017). Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials. Journal of Statistical Planning and Inference, 183, 1–17.
dExtDep
, rExtDep
, fExtDep
, fExtDep.np
# Trivariate Extremal Skew-t
pExtDep(q = c(1, 1.2, 0.6), type = "lower", method = "Parametric",
model = "EST", par = c(0.2, 0.4, 0.6, 2, 2, 2, 1))
# Bivariate Extremal-t
pExtDep(q = rbind(c(1.2, 0.6), c(1.1, 1.3)), type = "inv.lower",
method = "Parametric", model = "ET", par = c(0.2, 1))
# Bivariate Extremal Skew-t
pExtDep(q = rbind(c(1.2, 0.6), c(1.1, 1.3)), type = "inv.lower",
method = "Parametric", model = "EST", par = c(0.2, 0, 0, 1))
# Non-parametric angular density
beta <- c(1.0000000, 0.8714286, 0.7671560, 0.7569398,
0.7771908, 0.8031573, 0.8857143, 1.0000000)
pExtDep(q = rbind(c(0.1, 0.9), c(0.2, 0.8)),
method = "NonParametric", par = beta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.