index.ExtDep | R Documentation |
This function computes the extremal coefficient, Pickands dependence function and the coefficients of upper and lower tail dependence for several parametric models and the lower tail dependence function for the bivairate skew-normal distribution.
index.ExtDep(object, model, par, x, u)
object |
A character string indicating the index of extremal dependence to compute, including the extremal coefficient |
model |
A character string indicating the model/distribution. When |
par |
A vector indicating the parameter values of the corresponding model/distribution. |
x |
A vector on the bivariate or trivariate unit simplex indicating where to evaluate the Pickands dependence function. |
u |
A real in |
The extremal coefficient is defined as
\theta = V(1,\ldots,1) = d \int_{W} \max_{j \in \left\{1, ..., d\right\} }(w_j) dH(w) = - \log G(1,\ldots,1),
where W
represents the unit simplex, V
is the exponent function and G(\cdot)
the distribution function of a multivariate extreme value model. Bivariate and trivariate versions are available.
The Pickands dependence function is defined as A(x) = - \log G(1/x)
for x
in the bivariate/trivariate simplex (W
).
The coefficient of upper tail dependence is defined as
\vartheta = R(1,\ldots,1) = d \int_{W} \min_{j \in \left\{1, ..., d\right\} }(w_j) dH(w).
In the bivariate case, using the inclusion-exclusion principle this reduces to \vartheta = 2 + \log G(1,1) = 2 - V(1,1)
.
For the skew-normal distribution, the lower tail dependence function is defined as in Bortot (2010). This is an approximation where the tail dependence is obtained in the limiting case where u
goes to 1
. The par
argument should be a vector of length 3
comprising of the correlation parameter, between -1
and 1
and two real-valued skewness parameters.
When object="extremal"
, returns a value between 1
and d
(d=2,3
).
When object="pickands"
, returns a value between \max(x)
and 1
.
When object="upper.tail"
, returns a value between 0
and 1
.
When object="lower.tail"
, returns a value between -1
and 1
.
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
Bortot, P. (2010) Tail dependence in bivariate skew-normal and skew-t distributions. Unpublished.
#############################
### Extremal skew-t model ###
#############################
### Extremal coefficient
index.ExtDep(object="extremal", model="EST", par=c(0.5,1,-2,2))
### Pickands dependence function
w <- seq(0.00001, .99999, length=100)
pick <- vector(length=100)
for(i in 1:100){
pick[i] <- index.ExtDep(object="pickands", model="EST", par=c(0.5,1,-2,2),
x=c(w[i],1-w[i]))
}
plot(w, pick, type="l", ylim=c(0.5, 1), ylab="A(t)", xlab="t")
polygon(c(0, 0.5, 1), c(1, 0.5, 1), lwd=2, border = 'grey')
### Upper tail dependence coefficient
index.ExtDep(object="upper.tail", model="EST", par=c(0.5,1,-2,2))
### Lower tail dependence coefficient
index.ExtDep(object="lower.tail", model="EST", par=c(0.5,1,-2,2))
################################
### Skew-normal distribution ###
################################
### Lower tail dependence function
index.ExtDep(object="lower.tail", model="SN", par=c(0.5,1,-2), u=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.