index.ExtDep | R Documentation |
Computes the extremal coefficient, Pickands dependence function, and the coefficients of upper and lower tail dependence for several parametric models. Also computes the lower tail dependence function for the bivariate skew-normal distribution.
index.ExtDep(object, model, par, x, u)
object |
A character string indicating the index of extremal dependence to compute. Options are:
|
model |
A character string indicating the model/distribution.
|
par |
A vector of parameter values for the specified model/distribution. |
x |
A vector on the bivariate or trivariate unit simplex indicating where to evaluate the Pickands dependence function. |
u |
A real number in |
The extremal coefficient is defined as
\theta = V(1,\ldots,1) = d \int_{W} \max_{j \in \{1, ..., d\}} (w_j) dH(w) = - \log G(1,\ldots,1),
where W
is the unit simplex, V
is the exponent function, and
G(\cdot)
the distribution function of a multivariate extreme value model.
Bivariate and trivariate versions are available.
The Pickands dependence function is defined as
A(x) = - \log G(1/x)
for x
in the bivariate/trivariate simplex W
.
The coefficient of upper tail dependence is defined as
\vartheta = R(1,\ldots,1) = d \int_{W} \min_{j \in \{1, ..., d\}} (w_j) dH(w).
In the bivariate case, using the inclusion-exclusion principle this reduces to
\vartheta = 2 + \log G(1,1) = 2 - V(1,1).
For the skew-normal distribution, the lower tail dependence function is defined
as in Bortot (2010). This approximation is obtained in the limiting case as
u
tends to 1
. The par
argument should be a vector of length
3
, consisting of the correlation parameter (between -1
and 1
)
and two real-valued skewness parameters.
object="extremal"
: returns a value in [1, d]
(d=2,3
).
object="pickands"
: returns a value in [\max(x), 1]
.
object="upper.tail"
: returns a value in [0, 1]
.
object="lower.tail"
: returns a value in [-1, 1]
.
Simone Padoan simone.padoan@unibocconi.it
https://faculty.unibocconi.it/simonepadoan/
Boris Beranger borisberanger@gmail.com
https://www.borisberanger.com
Bortot, P. (2010). Tail dependence in bivariate skew-normal and skew-t distributions. Unpublished.
#############################
### Extremal skew-t model ###
#############################
## Extremal coefficient
index.ExtDep(object = "extremal", model = "EST", par = c(0.5, 1, -2, 2))
## Pickands dependence function
w <- seq(0.00001, 0.99999, length = 100)
pick <- numeric(100)
for (i in 1:100) {
pick[i] <- index.ExtDep(
object = "pickands", model = "EST", par = c(0.5, 1, -2, 2),
x = c(w[i], 1 - w[i])
)
}
plot(w, pick, type = "l", ylim = c(0.5, 1), ylab = "A(t)", xlab = "t")
polygon(c(0, 0.5, 1), c(1, 0.5, 1), lwd = 2, border = "grey")
## Upper tail dependence coefficient
index.ExtDep(object = "upper.tail", model = "EST", par = c(0.5, 1, -2, 2))
## Lower tail dependence coefficient
index.ExtDep(object = "lower.tail", model = "EST", par = c(0.5, 1, -2, 2))
################################
### Skew-normal distribution ###
################################
## Lower tail dependence function
index.ExtDep(object = "lower.tail", model = "SN", par = c(0.5, 1, -2), u = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.