fExtDep | R Documentation |
Estimate the parameters of extremal dependence models using frequentist, composite likelihood, or Bayesian approaches.
fExtDep(x, method = "PPP", model, par.start = NULL,
c = 0, optim.method = "BFGS", trace = 0,
Nsim, Nbin = 0, Hpar, MCpar, seed = NULL)
## S3 method for class 'ExtDep_Freq'
plot(x, type, log = TRUE, contour = TRUE, style, labels,
cex.dat = 1, cex.lab = 1, cex.cont = 1, Q.fix, Q.range,
Q.range0, cond = FALSE, ...)
## S3 method for class 'ExtDep_Freq'
logLik(object, ...)
## S3 method for class 'ExtDep_Bayes'
plot(x, type, log = TRUE, contour = TRUE, style, labels,
cex.dat = 1, cex.lab = 1, cex.cont = 1, Q.fix, Q.range,
Q.range0, cond = FALSE, cred.ci = TRUE, subsamp, ...)
## S3 method for class 'ExtDep_Bayes'
summary(object, cred = 0.95, plot = FALSE, ...)
x |
|
object |
For |
method |
Estimation method: |
model |
Name of the model. For |
par.start |
Vector of initial parameter values for optimization. |
c |
Real in |
optim.method |
Optimization algorithm (see |
trace |
Non-negative integer controlling optimization progress output (see |
Nsim |
Number of MCMC simulations (for |
Nbin |
Burn-in length (for |
Hpar |
List of hyper-parameters (see Details). Required for |
MCpar |
Variance of the proposal distribution (see Details). Required for |
seed |
Integer seed for reproducibility (passed to |
type |
For |
log |
Logical; applies to |
contour |
Logical; applies to |
style |
For |
labels |
Labels for axes in |
cex.dat |
Point size for 3D angular plots. |
cex.lab |
Label size in plots. |
cex.cont |
Contour line size in |
Q.fix , Q.range , Q.range0 , cond |
Arguments for |
cred.ci |
Logical, for |
subsamp |
Posterior subsample percentage (used with |
cred |
Credible interval coverage probability (default 0.95). |
plot |
Logical; if |
... |
Additional graphical or density arguments (see Details). |
method="PPP"
: Approximate likelihood estimation using dExtDep(method="Parametric", angular=TRUE)
.
method="BayesianPPP"
: Bayesian estimation of the spectral measure (Sabourin et al., 2013; Sabourin & Naveau, 2014). Requires Hpar
and MCpar
. Hyper-parameters depend on the model (see references for details).
method="Composite"
: Pairwise composite likelihood using dExtDep(method="Parametric", angular=FALSE)
.
See angular.plot
, pickands.plot
, and returns.plot
.
Angular plots can display data as histograms (style="hist"
) or ticks (style="ticks"
). For trivariate cases, use cex.dat
to control point size.
fExtDep
:
For "PPP"
or "Composite"
: an object of class ExtDep_Freq
with elements
The fitted model.
Estimated parameters.
Maximized log-likelihood.
Standard errors.
Takeuchi Information Criterion.
Input data.
For "BayesianPPP"
: an object of class ExtDep_Bayes
with elements
Posterior sample matrix of size (Nsim-Nbin) \times d
.
Log-likelihoods at posterior samples.
Log-priors at posterior samples.
Algorithm details.
Elapsed run time.
Simulation settings.
MCMC acceptance counts.
Posterior means.
Posterior standard deviations.
Bayesian Information Criterion.
logLik
: numerical log-likelihood value.
Simone Padoan (simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/) Boris Beranger (borisberanger@gmail.com, https://www.borisberanger.com)
Beranger, B. and Padoan, S. A. (2015). Extreme Dependence Models, in Extreme Value Modeling and Risk Analysis: Methods and Applications, Chapman & Hall/CRC.
Sabourin, A., Naveau, P., and Fougeres, A.-L. (2013). Bayesian model averaging for multivariate extremes. Extremes, 16, 325-350.
Sabourin, A. and Naveau, P. (2014). Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization. Computational Statistics & Data Analysis, 71, 542-567.
dExtDep
, pExtDep
, rExtDep
, fExtDep.np
# Poisson Point Process approach
data(pollution)
f.hr <- fExtDep(x = PNS, method = "PPP", model = "HR",
par.start = rep(0.5, 3), trace = 2)
plot(f.hr, type = "angular",
labels = c(expression(PM[10]), expression(NO), expression(SO[2])),
cex.lab = 2)
plot(f.hr, type = "pickands",
labels = c(expression(PM[10]), expression(NO), expression(SO[2])),
cex.lab = 2) # may be slow
# Pairwise composite likelihood
set.seed(1)
data <- rExtDep(n = 300, model = "ET", par = c(0.6, 3))
f.et <- fExtDep(x = data, method = "Composite", model = "ET",
par.start = c(0.5, 1), trace = 2)
plot(f.et, type = "angular", cex.lab = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.