fExtDep | R Documentation |
This function estimates the parameters of extremal dependence models.
fExtDep(method="PPP", data, model, par.start = NULL,
c = 0, optim.method = "BFGS", trace = 0, sig = 3,
Nsim, Nbin = 0, Hpar, MCpar, seed = NULL)
method |
A character string indicating the estimation method inlcuding |
data |
A matrix containing the data. |
model |
A character string with the name of the model. When |
par.start |
A vector representing the initial parameters values for the optimization algorithm. |
c |
A real value in |
optim.method |
A character string indicating the optimization algorithm. Required when |
trace |
A non-negative integer, tracing the progress of the optimization. Required when |
sig |
An integer indicating the number of significant digits when reporting outputs. |
Nsim |
An integer indicating the number of MCMC simulations. Required when |
Nbin |
An integer indicating the length of the burn-in period. Required when |
Hpar |
A list of hyper-parameters. See 'details'. Required when |
MCpar |
A positive real representing the variance of the proposal distirbution. See 'details'. Required when |
seed |
An integer indicating the seed to be set for reproducibility, via the routine |
When method="PPP"
the approximate likelihood is used to estimate the model parameters. It relies on the dExtDep
function with argument method="Parametric"
and angular=TRUE
.
When method="BayesianPPP"
a Bayesian estimation procedure of the spatral measure is considered, following Sabourin et al. (2013) and Sabourin & Naveau (2014). The argument Hpar
is required to specify the hyper-parameters of the prior distributions, taking the following into consideration:
For the Pairwise Beta model, the parameters components are independent, log-normal.
The vector of parameters is of size choose(dim,2)+1
with positive components. The first elements are the
pairiwse dependence parameters b
and the last one is the global dependence parameter alpha
.
The list of hyper-parameters should be of the form
mean.alpha=, mean.beta=, sd.alpha=, sd.beta=
;
For the Husler-Reiss model, the parameters are independent, log-normally distributed.
The elements correspond to the lambda
parameter. The list of hyper-parameters should be of the form mean.lambda=, sd.lambda=
;
For the Dirichlet model, the parameters are independent, log-normally distributed.
The elements correspond to the alpha
parameter. The list of hyper-parameters should be of the form mean.alpha=, sd.alpha=
;
For the Extremal-t model, the parameters are independent, logit-squared for rho
and log-normal for mu
. The first elements correspond to the correlation parameters rho
and the last parameter is the global dependence parameter mu
. The list of hyper-parameters should be of the form mean.rho=, mean.mu=, sd.rho=, sd.mu=
;
For the Extremal skewt-t model, the parameters are independent, logit-squared for rho
, normal for alpha
and log-normal for mu
. The first elements correspond to the correlation parameters rho
, then the skewness parameters alpha
and the last parameter is the global dependence parameter mu
. The list of hyper-parameters should be of the form mean.rho=, mean.alpha=, mean.mu=, sd.rho=, sd.alpha=, sd.mu=
;
For the Asymmetric Logistic model, the parameters' components are independent, log-normal for alpha
and logit for beta
. The list of hyper-parameters should be of the form mean.alpha=, mean.beta=, sd.alpha=, sd.beta=
.
The proposal distribution for each (transformed) parameter is a normal distribution centred on the (transformed) current parameter value, with variance MCpar
.
When method="Composite"
, the pairwise composite likelihood is applied, based on the dExtDep
function with argument method="Parametric"
and angular=FALSE
.
When method == "PPP"
or "Composite"
, a list is returned including
The estimated parameters.
The maximised log-likelihood.
The standard errors.
The Takeuchi Information Criterion.
When method == "BayesianPPP"
, a list is returned including
A (Nsim-Nbin)*d
matrix, where d
is the dimension of the parameter space
A vector of size (Nsim-Nbin)
containing the log-likelihoods evaluadted at each parameter
of the posterior sample.
A vector of size (Nsim-Nbin)
containing the logarithm of the prior densities evaluated
at each parameter of the posterior sample.
The specifics of the algorithm.
The time elapsed, as given by proc.time
between the start and end of the run.
The same as the passed argument.
Idem.
The total number of accepted proposals.
The number of accepted proposals after the burn-in period.
The estimated posterior parameters mean.
The empirical posterior sample standard deviation.
The Bayesian Information Criteria.
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
Beranger, B. and Padoan, S. A. (2015). Extreme dependence models, chapater of the book Extreme Value Modeling and Risk Analysis: Methods and Applications, Chapman Hall/CRC.
Sabourin, A., Naveau, P. and Fougeres, A-L (2013) Bayesian model averaging for multivariate extremes Extremes, 16, 325-350.
Sabourin, A. and Naveau, P. (2014) Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization Computational Statistics & Data Analysis, 71, 542-567.
dExtDep
, pExtDep
, rExtDep
, fExtDep.np
# Example using the Poisson Point Proce Process appraoch
data(pollution)
f.hr <- fExtDep(method="PPP", data=PNS, model="HR",
par.start = rep(0.5, 3), trace=2)
# Example using the pairwise composite (full) likelihood
set.seed(1)
data <- rExtDep(n=300, model="ET", par=c(0.6,3))
f.et <- fExtDep(method="Composite", data=data, model="ET",
par.start = c(0.5, 1), trace=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.