rExtDep | R Documentation |
Generates random samples of iid observations from extremal dependence models and semi-parametric stochastic generators.
rExtDep(n, model, par, angular = FALSE, mar = c(1,1,1), num, threshold, exceed.type)
n |
An integer indicating the number of observations. |
model |
A character string with the name of the model. Parametric models include
|
par |
A vector representing the parameters of the (parametric or non-parametric) model. |
angular |
Logical; |
mar |
A vector or matrix of marginal parameters. |
num |
An integer indicating the number of observations over which the componentwise maxima
is computed. Required for |
threshold |
A bivariate vector indicating the level of exceedances. Required for
|
exceed.type |
A character string taking values |
There is no limit on the dimensionality when model = "HR"
, "ET"
or "EST"
,
while model = "semi.bvevd"
and "semi.bvexceed"
can only generate bivariate observations.
When angular = TRUE
and model = "semi.bvevd"
or "semi.bvexceed"
,
the simulation of pseudo-angles follows Algorithm 1 of Marcon et al. (2017).
When model = "semi.bvevd"
and angular = FALSE
, maxima samples are generated
according to Algorithm 2 of Marcon et al. (2017).
When model = "semi.bvexceed"
and angular = FALSE
, exceedance samples are
generated above the value specified by threshold
, according to Algorithm 3 of Marcon et al. (2017).
exceed.type = "and"
generates samples that exceed both thresholds while
exceed.type = "or"
generates samples exceeding at least one threshold.
If mar
is a vector, the marginal distributions are identical. If a matrix is provided,
each row corresponds to a set of marginal parameters. No marginal transformation is applied when
mar = c(1,1,1)
.
A matrix with n
rows and p \ge 2
columns.
p = 2
when model = "semi.bvevd"
or "semi.bvexceed"
.
Simone Padoan simone.padoan@unibocconi.it https://faculty.unibocconi.it/simonepadoan/; Boris Beranger borisberanger@gmail.com https://www.borisberanger.com;
Marcon, G., Naveau, P. and Padoan, S. A. (2017). A semi-parametric stochastic generator for bivariate extreme events. Stat, 6, 184–201.
dExtDep
, pExtDep
, fExtDep
, fExtDep.np
# Example using the trivariate Husler-Reiss
set.seed(1)
data <- rExtDep(n = 10, model = "HR", par = c(2,3,3))
# Example using the semi-parametric generator of maxima
set.seed(2)
beta <- c(1.0000000, 0.8714286, 0.7671560, 0.7569398,
0.7771908, 0.8031573, 0.8857143, 1.0000000)
data <- rExtDep(n = 10, model = "semi.bvevd", par = beta,
mar = rbind(c(0.2, 1.5, 0.6), c(-0.5, 0.4, 0.9)))
# Example using the semi-parametric generator of exceedances
set.seed(3)
data <- rExtDep(n = 10, model = "semi.bvexceed", par = beta,
threshold = c(0.2, 0.4), exceed.type = "and")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.