View source: R/MinimalEnergyClustering.R
MinimalEnergyClustering | R Documentation |
Hierchical Clustering using the minimal energy approach of [Szekely/Rizzo, 2005].
MinimalEnergyClustering(DataOrDistances, ClusterNo = 0,
DistanceMethod="euclidean", ColorTreshold = 0,Data,...)
DataOrDistances |
[1:n,1:d] matrix of dataset to be clustered. It consists of n cases of d-dimensional data points. Every case has d attributes, variables or features. Alternatively, symmetric [1:n,1:n] distance matrix |
ClusterNo |
A number k which defines k different clusters to be build by the algorithm. |
DistanceMethod |
See |
ColorTreshold |
Draws cutline w.r.t. dendogram y-axis (height), height of line as scalar should be given |
Data |
[1:n,1:d] data matrix in the case that |
... |
In case of plotting further argument for |
List of
Cls |
If ClusterNo>0: [1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering. Otherwise ClusterNo=0: NULL |
Dendrogram |
Dendrogram of hierarchical clustering algorithm |
Object |
Ultrametric tree of hierarchical clustering algorithm |
Michael Thrun
[Szekely/Rizzo, 2005] Szekely, G. J. and Rizzo, M. L.: Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method, Journal of Classification, 22(2) 151-183.http://dx.doi.org/10.1007/s00357-005-0012-9, 2005.
HierarchicalClustering
data('Hepta')
out=MinimalEnergyClustering(Hepta$Data,ClusterNo=7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.