ModelBasedVarSelClustering: Model Based Clustering with Variable Selection

Description Usage Arguments Value Author(s) References Examples

View source: R/ModelBasedVarSelClustering.R

Description

Model-based clustering with variable selection and estimation of the number of clusters which is either based on [Marbac/Sedki, 2017],[Marbac et al., 2020], or on [Scrucca and Raftery, 2014].

Usage

1
ModelBasedVarSelClustering(Data,ClusterNo,Type,PlotIt=FALSE, ...)

Arguments

Data

[1:n,1:d] matrix of dataset to be clustered. It consists of n cases of d-dimensional data points. Every case has d attributes, variables or features.

ClusterNo

Numeric which defines number of cluster to search for.

Type

String, either VarSelLCM [Marbac/Sedki, 2017],[Marbac et al., 2020], or clustvarsel [Scrucca and Raftery, 2014].

PlotIt

(optional) Boolean. Default = FALSE = No plotting performed.

...

Further arguments passed on to VarSelCluster or clustvarsel.

Value

List of

Cls

[1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering.

Object

Object defined by clustering algorithm as the other output of this algorithm

Author(s)

Quirin Stier, Michael Thrun

References

[Marbac/Sedki, 2017] Marbac, M. and Sedki, M.: Variable selection for model-based clustering using the integrated complete-data likelihood. Statistics and Computing, 27(4), pp. 1049-1063, 2017.

[Marbac et al., 2020] Marbac, M., Sedki, M., & Patin, T.: Variable selection for mixed data clustering: application in human population genomics, Journal of Classification, Vol. 37(1), pp. 124-142. 2020.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
# Hepta
data("Hepta")
Data = Hepta$Data
V = ModelBasedVarSelClustering(Data, ClusterNo=7,Type="VarSelLCM")
Cls = V$Cls
ClusterAccuracy(Hepta$Cls, Cls, K = 7)

V = ModelBasedVarSelClustering(Data, ClusterNo=7,Type="clustvarsel")
Cls = V$Cls
ClusterAccuracy(Hepta$Cls, Cls, K = 7)

## Not run: 
# Hearts
heart=VarSelLCM::heart
ztrue <- heart[,"Class"]
Data <- heart[,-13]
V <- ModelBasedVarSelClustering(Data,2,Type="VarSelLCM")
Cls = V$Cls
ClusterAccuracy(ztrue, Cls, K = 2)

## End(Not run)

FCPS documentation built on July 8, 2021, 1:06 a.m.