PAMclustering | R Documentation |
Partitioning (clustering) of the data into k clusters around medoids, a more robust version of k-means [Rousseeuw/Kaufman, 1990, p. 68-125] .
PAMclustering(DataOrDistances,ClusterNo,
PlotIt=FALSE,Standardization=TRUE,Data,...)
DataOrDistances |
[1:n,1:d] matrix of dataset to be clustered. It consists of n cases of d-dimensional data points. Every case has d attributes, variables or features. Alternatively, symmetric [1:n,1:n] distance matrix |
ClusterNo |
A number k which defines k different clusters to be built by the algorithm. |
PlotIt |
Default: FALSE, If TRUE plots the first three dimensions of the dataset with colored three-dimensional data points defined by the clustering stored in |
Standardization |
|
Data |
[1:n,1:d] data matrix in the case that |
... |
Further arguments to be set for the clustering algorithm, if not set, default arguments are used. |
[Rousseeuw/Kaufman, 1990, chapter 2] or [Reynolds et al., 1992].
List of
Cls |
[1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering. |
Object |
Object defined by clustering algorithm as the other output of this algorithm |
Michael Thrun
[Rousseeuw/Kaufman, 1990] Rousseeuw, P. J., & Kaufman, L.: Finding groups in data, Belgium, John Wiley & Sons Inc., ISBN: 0471735787, doi:10.1002/9780470316801, Online ISBN: 9780470316801, 1990.
[Reynolds et al., 1992] Reynolds, A., Richards, G.,de la Iglesia, B. and Rayward-Smith, V.: Clustering rules: A comparison of partitioning and hierarchical clustering algorithms, Journal of Mathematical Modelling and Algorithms 5, 475-504, DOI:10.1007/s10852-005-9022-1, 1992.
data('Hepta')
out=PAMclustering(Hepta$Data,ClusterNo=7,PlotIt=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.