View source: R/SparseClustering.R
SparseClustering | R Documentation |
Implements the sparse clustering methods of [Witten/Tibshirani, 2010].
SparseClustering(DataOrDistances, ClusterNo, Type="Hierarchical",
PlotIt=F,Silent=FALSE, NoPerms=10,Wbounds, ...)
DataOrDistances |
Either a [1:n,1:d] matrix of dataset to be clustered. It consists of n cases of d-dimensional data points. Every case has d attributes, variables or features. or a [1:n,1:n] symmetric distance matrix. |
ClusterNo |
Numeric indicating number to cluster to find in Tree/ Dendrogramm in case of Type="Hierachical" or numer of cluster to use in Type="kmeans" |
Type |
(optional) Char selecting methods Hierarchical or kmeans. Default: "Hierarchical" |
PlotIt |
(optional) Boolean. Default = FALSE = No plotting performed. |
Silent |
(optional) Boolean: print output or not (Default = FALSE = no output) |
NoPerms |
(optional), numeric scalar, Number of permutations. |
Wbounds |
(optional) numeric vector, range of tuning parameters to consider. This is the L1 bound on w, the feature weights [Witten/Tibshirani, 2010]. |
... |
Further arguments passed on to sparcl HierarchicalSparseCluster or KMeansSparseCluster depending on |
List of
Cls |
[1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering. |
Object |
Object defined by clustering algorithm as the other output of this algorithm |
Tree |
Object Tree if Type="Hierachical" is used. |
Quality of clustering results varies between sparse hierarchical if data is given in comparison to the case that distances are given.
Quirin Stier, Michael Thrun
[Witten/Tibshirani, 2010] Witten, D. and Tibshirani, R.: A Framework for Feature Selection in Clustering. Journal of the American Statistical Association, Vol. 105(490), pp. 713-726, 2010.
# Hepta
data("Hepta")
Data = Hepta$Data
V1 = SparseClustering(Data, ClusterNo=7, Type="kmeans")
Cls1 = V1$Cls
V2 = SparseClustering(Data, ClusterNo=7, Type="Hierarchical")
Cls2 = V2$Cls
InputDistances = parallelDist::parDist(Data, method="euclidean")
DistanceMatrix = as.matrix(InputDistances)
V3 = SparseClustering(DistanceMatrix, ClusterNo=7, Type="Hierarchical")
Cls3 = V3$Cls
## Not run:
set.seed(1)
Data = matrix(rnorm(100*50),ncol=50)
y = c(rep(1,50),rep(2,50))
Data[y==1,1:25] = Data[y==1,1:25]+2
V1 = SparseClustering(Data, ClusterNo=2, Type="kmeans")
Cls1 = V1$Cls
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.