R/autoLab.R

Defines functions autoLab

Documented in autoLab

# Function taken from the directlabels package that it is in the public domain
autoLab <- function(x, y = NULL, labels = seq(along = x), cex = 1,
                       method = c("SANN", "GA"),
                       allowSmallOverlap = FALSE,
                       trace = FALSE, shadotext = FALSE,
                       doPlot = TRUE,
                       ...)
{
  # http://en.wikipedia.org/wiki/Automatic_label_placement
  # http://www.szoraster.com/Cartography/PracticalExperience.htm
  # http://www.eecs.harvard.edu/~shieber/Projects/Carto/carto.html
  # http://i11www.iti.uni-karlsruhe.de/map-labeling/bibliography/

  if (!missing(y) && (is.character(y) || is.expression(y))) {
    labels <- y
    y <- NULL
  }
  if (is.factor(labels)) 
    labels <- as.character(labels)
  z <- xy.coords(x, y, recycle = TRUE)
  x <- z$x
  y <- z$y
  if (length(labels) < length(x))
    labels <- rep(labels, length(x))

  method <- match.arg(method)

  boundary <- par()$usr
  image_width <- boundary[2] - boundary[1]
  image_height <- boundary[4] - boundary[3]
  if (allowSmallOverlap) # default to 2% of the image size
    nudgeFactor <- .02*(abs(boundary[1] + 1i*boundary[2] - boundary[3] - 1i*boundary[4]))

  n_labels <- length(x)
                        
  # There are eight possible alignment codes, corresponding to the 
  # corners and side mid-points of the rectangle
  # Codes are 1:8
  # Code 7 is the most preferred
  xBoundary <- image_width * 0.01 # add a small boundary around the rectangle
  yBoundary <- image_height * 0.01
  width <- strwidth(labels, units = "user", cex = cex) + xBoundary
  height <- strheight(labels, units = "user", cex = cex) + yBoundary
  gen_offset <- function(code)
          c(-1, -1, -1,  0,  0,  1,  1,  1)[code] * (width/2) +
    1i * c(-1,  0,  1, -1,  1, -1,  0,  1)[code] * (height/2)
  # Finds intersection area of two rectangles
  rect_intersect <- function(xy1, offset1, xy2, offset2) {
    w <- pmin(Re(xy1+offset1/2), Re(xy2+offset2/2)) - pmax(Re(xy1-offset1/2), Re(xy2-offset2/2))   
    h <- pmin(Im(xy1+offset1/2), Im(xy2+offset2/2)) - pmax(Im(xy1-offset1/2), Im(xy2-offset2/2))   
    w[w <= 0] <- 0
    h[h <= 0] <- 0
    w*h
  }

  nudge <- function(offset) {
    # Nudge the labels slightly if they overlap:
    doesIntersect <- rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
                                    xy[rectidx2] + offset[rectidx2], rectv[rectidx2]) > 0

    pyth <- abs(xy[rectidx1] + offset[rectidx1] - xy[rectidx2] - offset[rectidx2]) / nudgeFactor
    eps <- 1.0e-10

    for (i in which(doesIntersect & pyth > eps)) {
      idx1 <- rectidx1[i]
      idx2 <- rectidx2[i]
      vect <- (xy[idx1] + offset[idx1] - xy[idx2] - offset[idx2]) / pyth[idx1]
      offset[idx1] <- offset[idx1] + vect
      offset[idx2] <- offset[idx2] - vect
    }
    offset
  }

  objective <- function(gene) {
    offset <- gen_offset(gene)
    # Allow for "bending" the labels a bit
    if (allowSmallOverlap) offset <- nudge(offset)

    if (!is.null(rectidx1))
      area <- sum(rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
                                xy[rectidx2] + offset[rectidx2], rectv[rectidx2]))
    else
      area <- 0
    
    # Penalize labels which go outside the image area
    # Count points outside of the image
    n_outside <- sum(Re(xy + offset - rectv/2) < boundary[1] | Re(xy + offset + rectv/2) > boundary[2] |
                    Im(xy + offset - rectv/2) < boundary[3] | Im(xy + offset + rectv/2) > boundary[4]) 
    area + n_outside * image_width * image_height
  }
  
  # Make a list of label rectangles in their reference positions,
  # centered over the map feature; the real labels are displaced
  # from these positions so as not to overlap
  # Note that some labels can be bigger than others
  xy <- x + 1i * y
  rectv <- width + 1i * height

  rectidx1 <- rectidx2 <- array(0, (length(x)^2 - length(x)) / 2)
  k<-0
  for (i in 1:length(x))
    for (j in seq(len=(i-1))) {
      k <- k + 1
      rectidx1[k] <- i
      rectidx2[k] <- j
    }
  canIntersect <- rect_intersect(xy[rectidx1], 2 * rectv[rectidx1],
                                xy[rectidx2], 2 * rectv[rectidx2]) > 0
  rectidx1 <- rectidx1[canIntersect]
  rectidx2 <- rectidx2[canIntersect]
  if (trace) cat("possible intersects =", length(rectidx1), "\n")

  if (trace) cat("portion covered =", sum(rect_intersect(xy, rectv,xy,rectv))/(image_width*image_height),"\n")

  SANN <- function() {
    # Make some starting "genes"
    #gene = sample(1:8, n_labels, repl = TRUE)
### modif FH
# 1 : bas gauche
# 2 : gauche
# 3 : haut gauche
# 4 : bas
# 5 : haut
# 6 : bas froite
# 7 : droite
# 8 : haut droite
    gene <- rep(1, n_labels)
	gene <- gene + as.integer(Im(xy)>min(Im(xy))+diff(range(Im(xy)))/3)
	gene <- gene + as.integer(Im(xy)>min(Im(xy))+2*diff(range(Im(xy)))/3)
	gene <- gene + 3*as.integer(Re(xy)>min(Re(xy))+diff(range(Re(xy)))/3)
	gene <- gene + 3*as.integer(Re(xy)>min(Re(xy))+2*diff(range(Re(xy)))/3)
    gene [gene>=6] <- gene[gene>=6]-1
    score <- objective(gene)
    bestgene <- gene
    bestscore <- score
    T <- 2.5
    for (i in 1:50) {
      k <- 1
      for (j in 1:50) {
        newgene <- gene
        newgene[sample(1:n_labels, 1)] <- sample(1:8,1)
        newscore <- objective(newgene)
        if (newscore < score || runif(1) < 1 - exp((newscore - score) / T)) {
          k <- k + 1
          score <- newscore
          gene <- newgene
        }
        if (score <= bestscore) {
          bestscore <- score
          bestgene <- gene
        }
        if (bestscore == 0 || k == 10) break
      }
      if (bestscore == 0) break
      if (trace) cat("overlap area =", bestscore, "\n")
      T <- 0.9 * T
    }
  
    if (trace) cat("overlap area =", bestscore, "\n")
    nx <- Re(xy + gen_offset(bestgene))
    ny <- Im(xy + gen_offset(bestgene))
    list(x = nx, y = ny)
  }

  xy <- SANN()

  # Taken from http://article.gmane.org/gmane.comp.lang.r.general/147787
  shadowtext <- function(xy, labels, col='black', bg='white',
                          theta=seq(pi/4, 2*pi, length.out=8), r=0.1, ... ) {
      
          xy <- xy.coords(xy)
          xo <- r*strwidth('A')
          yo <- r*strheight('A')

          for (i in theta)
              text(xy$x + cos(i)*xo, xy$y + sin(i)*yo, labels, col=bg, ...)

          text(xy$x, xy$y, labels, col=col, ... )
  }

  if (doPlot)
### modif FH
if (shadotext==TRUE)    shadowtext(xy, labels, cex = cex, ...)
else text(xy, labels, cex = cex, ...)

  invisible(xy)
}

Try the FactoMineR package in your browser

Any scripts or data that you put into this service are public.

FactoMineR documentation built on May 29, 2024, 3:36 a.m.