Nothing
#'@title Create a model matrix with feature hashing
#'
#'@importFrom magrittr %>%
#'@importFrom magrittr %<>%
#'@importFrom methods new
#'@importFrom methods checkAtAssignment
#'@importFrom Matrix colSums
#'@importFrom Matrix Diagonal
#'
#'@importClassesFrom Matrix dgCMatrix
#'
#'@param formula \code{formula} or a \code{character} vector of column names (will be expanded to a \code{formula})
#'@param data data.frame. The original data.
#'@param hash.size positive integer. The hash size of feature hashing.
#'@param transpose logical value. Indicating if the transpose should be returned. It affects the space
#'of the returned object when the dimension is imbalanced. Please see the details.
#'@param create.mapping logical value. The indicator of whether storing the hash mapping or not.
#'The mapping might miss some interaction terms which involves \code{split}ed features.
#'Please see the details.
#'@param is.dgCMatrix logical value. Indicating if the result is \code{dgCMatrix} or \code{CSCMatrix}
#'@param signed.hash logical value. Indicating if the hashed value is multipled by random sign.
#'This will reduce the impact of collision. Disable it will enhance the speed.
#'@param progress logical value. Indicating if the progress bar is displayed or not.
#'
#'@details
#'The \code{hashed.model.matrix} hashes the feature during
#'the construction of the model matrix. It uses the 32-bit variant of MurmurHash3
#'\url{https://github.com/aappleby/smhasher}. Weinberger
#'et. al. (2009) used two separate hashing function \eqn{h}(\code{hashed.value}) and
#'\eqn{\xi}(\code{hash.sign}) to determine the indices and the sign of the values
#'respectively. Different seeds are used to implement the hashing function
#'\eqn{h} and \eqn{\xi} with MurmurHash3.
#'
#'The formula is parsed via \code{\link{terms.formula}} with "split" as special
#'keyword. The interaction term is hashed (the reader can try to expl)in different ways. Please see example for
#'the detailed implementation. We provide a helper function: \code{\link{hashed.interaction.value}} to show show the index after interaction.
#'The "\code{split}" is used to expand the concatenated feature
#'such as "10129,10024,13866,10111,10146,10120,10115,10063" which represents the occurrence of
#'multiple categorical variable: "10129", "10024", "13866", "10111", "10146", "10120", "10115", and
#'"10063". The \code{hashed.model.matrix} will expand the concatenated feature and produce
#'the related model matrix.
#'
#'The "\code{split}" accepts two parameters:
#'\itemize{
#' \item \code{delim}, character value to use as delimiter for splitting;
#' \item \code{type}, one of \code{existence}, \code{count} or \code{tf-idf}.
#'}
#'
#'If \code{type} is set to \code{tf-idf}, then \code{signed.hash} should be set to \code{FALSE}.
#'
#'The user could explore the behavior via function \code{\link{simulate.split}}.
#'
#'The argument \code{transpose} affects the size of the returned object in the following way.
#'For a \eqn{m \times n} matrix with \eqn{k} non-zero elements, the returned \code{dgCMatrix} requires
#'\eqn{O(n) + O(k)} space. For details, please check the documentation of
#'the \code{\link{dgCMatrix-class}}. Note that the \code{rownames} of the returned \code{dgCMatrix}
#'is \code{character(0)} so the space complexity does not contain the term \eqn{O(m)}.
#'
#'The \code{mapping} created by enabling \code{create.mapping} might miss the interaction term which
#'involves \code{split}ed features. For example, suppose there are two columns \code{a} and \code{b}
#'while the value are 1 and 1,2,3 respectively. The user marks the column \code{b} with
#'\code{split}. If the hashed value of \code{b1} and \code{b2} are collided, then the interaction
#'\code{a1:b1} will not appear in the returned mapping table. Because this package is originally
#'designed for predictive analysis and the mapping should not play an
#'important role of predictive analysis. If you have a test case and want to ask us to fix this,
#'please provide us a test case in \url{https://github.com/wush978/FeatureHashing/issues/67}.
#'
#'@references
#'H. B. McMahan, G. Holt, D. Sculley, et al. "Ad click
#'prediction: a view from the trenches". In: _The 19th ACM SIGKDD
#'International Conference on Knowledge Discovery and Data Mining,
#'KDD 2013, Chicago, IL, USA, August 11-14, 2013_. Ed. by I. S.
#'Dhillon, Y. Koren, R. Ghani, T. E. Senator, P. Bradley, R. Parekh,
#'J. He, R. L. Grossman and R. Uthurusamy. ACM, 2013, pp. 1222-1230.
#'DOI: 10.1145/2487575.2488200. <URL:
#'\url{https://doi.acm.org/10.1145/2487575.2488200}>.
#'
#'Kilian Q. Weinberger, Anirban Dasgupta, John Langford,
#'Alexander J. Smola, and Josh Attenberg. ICML, volume 382 of ACM
#'International Conference Proceeding Series, page 140. ACM, (2009)
#'
#'W. Zhang, S. Yuan, J. Wang, et al. "Real-Time Bidding
#'Benchmarking with iPinYou Dataset". In: _arXiv preprint
#'arXiv:1407.7073_ (2014).
#'@examples
#'# The following scripts show how to fit a logistic regression
#'# after feature hashing
#'\dontrun{
#'data(ipinyou)
#'f <- ~ IP + Region + City + AdExchange + Domain +
#' URL + AdSlotId + AdSlotWidth + AdSlotHeight +
#' AdSlotVisibility + AdSlotFormat + CreativeID +
#' Adid + split(UserTag, delim = ",")
#'# if the version of FeatureHashing is 0.8, please use the following command:
#'# m.train <- as(hashed.model.matrix(f, ipinyou.train, 2^16, transpose = FALSE), "dgCMatrix")
#'m.train <- hashed.model.matrix(f, ipinyou.train, 2^16)
#'m.test <- hashed.model.matrix(f, ipinyou.test, 2^16)
#'
#'# logistic regression with glmnet
#'
#'library(glmnet)
#'
#'cv.g.lr <- cv.glmnet(m.train, ipinyou.train$IsClick,
#' family = "binomial")#, type.measure = "auc")
#'p.lr <- predict(cv.g.lr, m.test, s="lambda.min")
#'auc(ipinyou.test$IsClick, p.lr)
#'
#'## Per-Coordinate FTRL-Proximal with $L_1$ and $L_2$ Regularization for Logistic Regression
#'
#'# The following scripts use an implementation of the FTRL-Proximal for Logistic Regresion,
#'# which is published in McMahan, Holt and Sculley et al. (2013), to predict the probability
#'# (1-step prediction) and update the model simultaneously.
#'
#'
#'source(system.file("ftprl.R", package = "FeatureHashing"))
#'m.train <- hashed.model.matrix(f, ipinyou.train, 2^16, transpose = TRUE)
#'ftprl <- initialize.ftprl(0.1, 1, 0.1, 0.1, 2^16)
#'ftprl <- update.ftprl(ftprl, m.train, ipinyou.train$IsClick, predict = TRUE)
#'auc(ipinyou.train$IsClick, attr(ftprl, "predict"))
#'
#'# If we use the same algorithm to predict the click through rate of the 3rd season of iPinYou,
#'# the overall AUC will be 0.77 which is comparable to the overall AUC of the
#'# 3rd season 0.76 reported in Zhang, Yuan, Wang, et al. (2014).
#'}
#'
#'# The following scripts show the implementation of the FeatureHashing.
#'
#'# Below the original values will be project in a space of 2^6 dimensions
#'m <- hashed.model.matrix(~ ., CO2, 2^6, create.mapping = TRUE,
#' transpose = TRUE, is.dgCMatrix = FALSE)
#'
#'# Print the matrix via dgCMatrix
#'as(m, "dgCMatrix")
#'
#'# Extraction of the dictionary: values with their hash
#'mapping <- hash.mapping(m)
#'
#'# To check the rate of collisions, we will extract the indices of the hash
#'# values through the modulo-division method, count how many duplicates
#'# we have (in best case it should be zero) and perform a mean.
#'mean(duplicated(mapping))
#'
#'# The type of the result produced by the function `hashed.model.matrix`
#'# is a CSCMatrix. It supports simple subsetting
#'# and matrix-vector multiplication
#'rnorm(2^6) %*% m
#'
#'# Detail of the hashing
#'# To hash one specific value, we can use the `hashed.value` function
#'# Below we will apply this function to the feature names
#'vectHash <- hashed.value(names(mapping))
#'
#'# Now we will check that the result is the same than the one got with
#'# the more generation `hashed.model.matrix` function.
#'# We will use the Modulo-division method (that's the [%% 2^6] below)
#'# to find the address in hash table easily.
#'stopifnot(all(vectHash %% 2^6 + 1 == mapping))
#'
#'# The sign is corrected by `hash.sign`
#'hash.sign(names(mapping))
#'
#'## The interaction term is implemented as follow:
#'m2 <- hashed.model.matrix(~ .^2, CO2, 2^6, create.mapping = TRUE,
#' transpose = TRUE, is.dgCMatrix = FALSE)
#'# The ^ operator indicates crossing to the specified degree.
#'# For example (a+b+c)^2 is identical to (a+b+c)*(a+b+c)
#'# which in turn expands to a formula containing the main effects
#'# for a, b and c together with their second-order interactions.
#'
#'# Extract the mapping
#'mapping2 <- hash.mapping(m2)
#'
#'# Get the hash of combination of two items, PlantQn2 and uptake
#'mapping2["PlantQn2:uptake"]
#'
#'# Extract hash of each item
#'h1 <- hashed.value("PlantQn2")
#'h2 <- hashed.value("uptake")
#'
#'# Computation of hash of both items combined
#'h3 <- hashed.value(rawToChar(c(intToRaw(h1), intToRaw(h2))))
#'stopifnot(h3 %% 2^6 + 1 == mapping2["PlantQn2:uptake"])
#'
#'# The concatenated feature, i.e. the array<string> type in hive
#'data(test.tag)
#'df <- data.frame(a = test.tag, b = rnorm(length(test.tag)))
#'m <- hashed.model.matrix(~ split(a, delim = ",", type = "existence"):b, df, 2^6,
#' create.mapping = TRUE)
#'# The column `a` is splitted by "," and have an interaction with "b":
#'mapping <- hash.mapping(m)
#'names(mapping)
#'
#'@export
#'@importFrom methods new as checkAtAssignment as
#'@importFrom stats as.formula terms.formula
#'@importFrom utils getParseData head
#'@importClassesFrom Matrix dgCMatrix
#'@aliases hashed.value hash.sign hashed.interaction.value
hashed.model.matrix <- function(formula, data, hash.size = 2^18, transpose = FALSE,
create.mapping = FALSE, is.dgCMatrix = TRUE, signed.hash = FALSE,
progress = FALSE) {
stopifnot(hash.size >= 0)
stopifnot(is.data.frame(data))
stopifnot(inherits(formula, "formula") | inherits(formula, "character"))
if(inherits(formula, "character")) formula %<>% paste(collapse = " + ") %>% paste("~", .) %>% as.formula
tf.idf.string <- "type = \"tf-idf\""
tf.idf <- as.character(formula) %>% grep(tf.idf.string, .) %>% sum > 1
if(tf.idf){
if(signed.hash) stop("If you use tf-idf, parameter signed.hash should be set to FALSE.")
formula <- as.character(formula) %>% gsub(pattern = tf.idf.string, replacement = "type = \"count\"", x = .) %>% paste0(collapse = " ") %>% as.formula
}
tf <- terms.formula(formula, data = data, specials = "split")
retval <- new(.CSCMatrix)
.hashed.model.matrix.dataframe(tf, data, hash.size, transpose, retval, create.mapping, signed.hash, progress)
class(retval) <- .CSCMatrix
retval@Dimnames[[2]] <- paste(seq_len(retval@Dim[2]))
if (is.dgCMatrix) {
retval2 <- as(retval, "dgCMatrix")
for(name in setdiff(names(attributes(retval)), names(attributes(retval2)))) {
attr(retval2, name) <- attr(retval, name)
}
if (tf.idf) tf.idf.transfo(retval2) else retval2
} else if (tf.idf) tf.idf.transfo(retval) else retval
}
# This is the function called from C to parse the \code{split} function.
parse_split <- function(text) {
origin.keep.source <- options()$keep.source
tryCatch({
options(keep.source = TRUE)
p <- parse(text = text)
tmp <- getParseData(p)
reference_name <- tmp$text[which(tmp$token == "SYMBOL")]
if ("delim" %in% tmp$text) {
delim <- tmp$text[which(tmp$text == "delim")[1] + 2]
delim <- gsub(pattern = '"', replacement = '', delim)
} else {
# the default value of delim
delim <- ","
}
if ("type" %in% tmp$text) {
type <- tmp$text[which(tmp$text == "type")[1] + 2]
type <- gsub(pattern = '"', replacement = '', type)
} else {
# the default value of type
type <- "existence"
}
list(reference_name = reference_name, delim = delim, type = type)
}, finally = {options(keep.source = origin.keep.source)})
}
tf.idf.transfo <- function(hash.matrix){
idf.train <- log(nrow(hash.matrix)/colSums(hash.matrix)) %>% Diagonal(x = .)
hash.matrix %*% idf.train
}
# Avoid error messages during CRAN check.
# The reason is that these variables are never declared
# They are mainly column names inferred by Data.table...
globalVariables(c("."))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.