Description Usage Arguments Details References
the MSE is the mean of the square of the errors, corresponding to the expected value of the squared error loss or quadratic loss. The difference occurs because of randomness or because the estimator doesn't account for information that could produce a more accurate estimate.
1 | mse(observados, estimados, k)
|
observados |
vector of values observed. |
estimados |
vector of regression model data. |
k |
the number of model parameters |
mse = (sum(estimados-observados)^2)/(length(observados)-k)
See https://en.wikipedia.org/wiki/Mean_squared_error for more details.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.