Nothing
#' @importFrom stats acf ar
#' @useDynLib HDTSA
#' @importFrom Rcpp sourceCpp
#' @importFrom Rcpp evalCpp
#' @import Rcpp
permutationMax <- function(X, prewhiten=TRUE, m=NULL, verbose = FALSE) {
#
# X: nxp data matrix
# m: maximum lag used in calculating cross correlation coefficients
## Step 0: prewhiten each columns of X
if(is.null(m)) m <- 10
p=ncol(X)
n=nrow(X)
if(prewhiten)
{
R <- 5
arOrder <- rep(0, p)
for(j in 1:p) {
t=ar(X[,j], order.max = R)
X[,j] <- t$resid; arOrder[j] <- t$order
}
j <- max(arOrder)
X <- X[(j+1):n, ]
}
## Step 1: calculate max_k |\rho(k)| for each pair components
rho=acf(X,lag.max=m, plot=F) # rho$acf is an (m+1)xpxp array
p0=p*(p-1)/2 # total number of pairs of component series
M=vector(mode="numeric",length=p0) # max correlations between i-th and
#j-th component
# over lags between -m to m, for 1 <= j < i <= p
for(i in 2:p) { for(j in 1:(i-1))
M[(i-2)*(i-1)/2+j]=max(abs(rho$acf[,i,j]), abs(rho$acf[,j,i]))
}
# For a pxp matrix, stack rows below the main diagoal together,
# the (i,j)-th element, for i>j, is in the position (i-2)*(i-1)/2+j
# cat("STEP1","\n")
## Step 2: sorting p0 maximum correlation in descending order,
## find the ratio estimator for r
Ms=sort.int(M, decreasing=T, index.return=T)
# Ms$x are sorted correlation, Ms$ix are the corresponding indices in M
p1=as.integer(p0*0.75)
ratio=Ms$x[1:p1]/Ms$x[2:(p1+1)]
max0=max(ratio)
n=1:p1
r=n[ratio[n]==max0]; j=length(r); r=r[j]
# cat("STEP2","\n")
## Step 3: find the pairs corresponding to the r maximum max_k |\rho(k)|
h=mat.or.vec(p,1)
for(i in 2:p) h[i]=(i-2)*(i-1)/2
Inx=mat.or.vec(p,p); I=2:p
for(k in 1:r) {
q=I[(Ms$ix[k]-h[I])>0];
s=length(q)
i=q[s]
j=Ms$ix[k]-h[i]
Inx[i,j]=1}
# Now the entrices of Inx equal 1 are the positions with (i,j) connected,
# and all other entrices are 0
# cat("STEP3","\n")
## Step 4: picking up the grouping from each columns of Inx, mark column
## with Index=1 with a group with at least two members, and Index=0
## otherwise
G=mat.or.vec(p,p-1);
Index=rep(0,p-1)
N=rep(0,p-1)
# G[,j] records the components (from j-th column of Inx) to be grouped
# together with j
for(j in 1:(p-1)) { k=1
for(i in (j+1):p) if(Inx[i,j]>0) { k=k+1; G[k,j]=i}
if(k>1) { G[1,j]=j; Index[j]=1; N[j]=k }
}
# cat("STEP4","\n")
## Step 5: combining together any two groups obtained in Step 4 sharing
## the same component
check=1
while(check>0) { check=0
for(i in 1:(p-2)) { if(Index[i]==0) next
for(j in (i+1):(p-1)) { if(Index[j]==0) next
a=G[,i][G[,i]>0]; b=G[,j][G[,j]>0]
c=c(a, b); d=length(c[duplicated(c)])
if(d>0) { # there are duplicated elements in a & b
a=unique(c) # picking up different elements
##from G[,i] & G[,j]
G[,i]=0; G[1:length(a),i]=sort(a); Index[j]=0
N[i]=length(a); N[j]=0;
check=1;
}
}
}
# cat("d=", d, "\n")
}
# cat("STEP5","\n")
## Step 6: Output
K=length(Index[Index==1])
if(K==0) stop("All component series are linearly independent")
Group=matrix(0,p,K)
k=1
for(j in 1:(p-1)) { if(Index[j]==1) { Group[,k]=G[,j]; k=k+1} }
# dev
one_mem <- which(!(c(1:p) %in% Group))
N2 <- length(one_mem)
if(N2>0) Group <- cbind(Group,rbind(t(one_mem),matrix(0, p-1, N2)))[1:max(N),]
else Group <- as.matrix(Group[1:max(N),])
q_block <- K+N2
Nosmem <- c(N[N>0],rep(1,N2))
if(verbose){
#cat("\n"); cat("Number of groups", K, "\n") #todo
cat("\n"); cat("Number of groups:", q_block, "\n") #q_block
# cat("Number of members in those groups:", N[N>0], "\n") #todo
cat("\n"); cat("Number of members in those groups:", Nosmem, "\n") #q_block
for(i in c(1:K)){
cat("Group",i,": contains these columns index of the zt:", drop(Group[,i][Group[,i]>0]), "\n")
}
cat("Omit groups that have only one member\n")
}
#to do
#result include too many useless output
colnames(Group) <- paste("Group", c(1:q_block))
output=list(NoGroups = q_block, No_of_Members = Nosmem, Groups = Group)
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.