R/permutationMax.R

Defines functions permutationMax

#' @importFrom stats acf ar 
#' @useDynLib HDTSA
#' @importFrom Rcpp sourceCpp
#' @importFrom Rcpp evalCpp
#' @import Rcpp 



permutationMax <- function(X, prewhiten=TRUE, m=NULL, verbose = FALSE) {
  #
  # X: nxp data matrix
  # m: maximum lag used in calculating cross correlation coefficients

  ## Step 0: prewhiten each columns of X
  if(is.null(m)) m <- 10
  
  p=ncol(X) 
  n=nrow(X)
  if(prewhiten)
  {
    R <- 5
    arOrder <- rep(0, p)
    for(j in 1:p) { 
      t=ar(X[,j], order.max = R)
      X[,j] <- t$resid; arOrder[j] <- t$order
      }
    j <- max(arOrder)
    X <- X[(j+1):n, ]
  }
  ## Step 1: calculate max_k |\rho(k)| for each pair components

  rho=acf(X,lag.max=m, plot=F) # rho$acf is an (m+1)xpxp array

  p0=p*(p-1)/2 # total number of pairs of component series
  M=vector(mode="numeric",length=p0) # max correlations between i-th and
  #j-th component
                           # over lags between -m to m, for 1 <= j < i <= p
  for(i in 2:p) { for(j in 1:(i-1))
  	M[(i-2)*(i-1)/2+j]=max(abs(rho$acf[,i,j]), abs(rho$acf[,j,i]))
  	}
      # For a pxp matrix,  stack rows below the main diagoal together,
      # the (i,j)-th element, for i>j, is in the position (i-2)*(i-1)/2+j
  # cat("STEP1","\n")

  ## Step 2: sorting p0 maximum correlation in descending order,
  ## find the ratio estimator for r
  Ms=sort.int(M, decreasing=T, index.return=T)
      # Ms$x are sorted correlation, Ms$ix are the corresponding indices in M
  p1=as.integer(p0*0.75)
  ratio=Ms$x[1:p1]/Ms$x[2:(p1+1)]
  max0=max(ratio)
  n=1:p1
  r=n[ratio[n]==max0]; j=length(r); r=r[j]
  # cat("STEP2","\n")

  ## Step 3: find the pairs corresponding to the r maximum max_k |\rho(k)|
  h=mat.or.vec(p,1)
  for(i in 2:p) h[i]=(i-2)*(i-1)/2
  Inx=mat.or.vec(p,p); I=2:p
  for(k in 1:r) { 
    q=I[(Ms$ix[k]-h[I])>0]; 
    s=length(q)
    i=q[s]
    j=Ms$ix[k]-h[i]
    Inx[i,j]=1}
  # Now the entrices of Inx equal 1 are the positions with (i,j) connected,
  # and all other entrices are 0
  # cat("STEP3","\n")

  ## Step 4: picking up the grouping from each columns of Inx, mark column
  ##         with Index=1 with a group with at least two members, and Index=0 
  ##         otherwise
  G=mat.or.vec(p,p-1);
  Index=rep(0,p-1)
  N=rep(0,p-1)
  # G[,j] records the components (from j-th column of Inx) to be grouped
  # together with j
  for(j in 1:(p-1)) { k=1
  	for(i in (j+1):p) if(Inx[i,j]>0) { k=k+1; G[k,j]=i}
  	if(k>1) { G[1,j]=j; Index[j]=1; N[j]=k }
  }
  # cat("STEP4","\n")

  ## Step 5: combining together any two groups obtained in Step 4 sharing
  ##         the same component
  check=1
  while(check>0) {  check=0
  for(i in 1:(p-2)) { if(Index[i]==0) next
          for(j in (i+1):(p-1)) { if(Index[j]==0) next
                  a=G[,i][G[,i]>0]; b=G[,j][G[,j]>0]
                  c=c(a, b); d=length(c[duplicated(c)])
                  if(d>0) {  # there are duplicated elements in a & b
                             a=unique(c) # picking up different elements 
                             ##from G[,i] & G[,j]
                             G[,i]=0; G[1:length(a),i]=sort(a); Index[j]=0
                             N[i]=length(a); N[j]=0;
                             check=1;
  		}
          }
  }
  # cat("d=", d, "\n")
  }
  # cat("STEP5","\n")


  ## Step 6: Output
  K=length(Index[Index==1])
  if(K==0) stop("All component series are linearly independent")
  Group=matrix(0,p,K)
  k=1
  for(j in 1:(p-1)) { if(Index[j]==1) { Group[,k]=G[,j]; k=k+1} }
  
  # dev
  one_mem <- which(!(c(1:p) %in%  Group))
  N2 <- length(one_mem)
  if(N2>0) Group <- cbind(Group,rbind(t(one_mem),matrix(0, p-1, N2)))[1:max(N),] 
  else Group <- as.matrix(Group[1:max(N),])
  q_block <- K+N2
  Nosmem <- c(N[N>0],rep(1,N2))
  
  if(verbose){
    #cat("\n"); cat("Number of groups", K, "\n") #todo
    cat("\n"); cat("Number of groups:", q_block, "\n") #q_block
    # cat("Number of members in those groups:", N[N>0], "\n") #todo
    cat("\n"); cat("Number of members in those groups:", Nosmem, "\n") #q_block
    for(i in c(1:K)){
      cat("Group",i,": contains these columns index of the zt:", drop(Group[,i][Group[,i]>0]), "\n")
    }
    cat("Omit groups that have only one member\n")
  }
  #to do 
  #result include too many useless output
  colnames(Group) <- paste("Group", c(1:q_block))
  output=list(NoGroups = q_block, No_of_Members = Nosmem, Groups = Group)
  return(output)
}

Try the HDTSA package in your browser

Any scripts or data that you put into this service are public.

HDTSA documentation built on Sept. 11, 2024, 5:49 p.m.