Nothing
CSA_fragmentationPeakDetection <- function(CSA_hrms_address, CSA_hrms_file, tempAlignedTableSubsetsFolder = NULL,
peaklist, selectedIPApeaks = NULL, RTtolerance, massError, minSNRbaseline,
smoothingWindowMS1, scanTolerance, nSpline, topRatioPeakHeight,
minIonRangeDifference, minNumCSApeaks, pearsonRHOthreshold, outputCSAeic = NULL) {
##
minNumCSApeaks <- minNumCSApeaks - 1 # To count for the seed ion
##
##############################################################################
##
if (is.null(outputCSAeic)) {
plotEICcheck <- FALSE
} else {
##
oldpar <- par(no.readonly = TRUE)
on.exit(suppressWarnings(par(oldpar)))
##
plotEICcheck <- TRUE
##
FSA_dir.create(outputCSAeic, allowedUnlink = FALSE)
}
##
################################ MS level = 1 ################################
##
p2l <- IDSL.MXP::peak2list(CSA_hrms_address, CSA_hrms_file)
scanTable <- p2l[["scanTable"]] # this gets table of details for each spectra
spectraList <- p2l[["spectraList"]] # this gets the spectra values
p2l <- NULL
##
xMS1 <- which(scanTable$peaksCount > 0 & scanTable$msLevel == 1) # peaks from soft ionization channel ## some files may not have data in the re-calibration column.
spectraList <- spectraList[xMS1]
scanTable <- scanTable[xMS1, ]
aggregatedSpectraList <- IPA_spectraListAggregator(spectraList)
spectraList <- NULL
##
retentionTime <- scanTable$retentionTime
##
precursorCE <- as.matrix(scanTable$collisionEnergy) # Collision energy
MS1polarity <- as.matrix(scanTable$polarity)
##
LretentionTime <- length(retentionTime)
##
##############################################################################
##
if (!is.null(tempAlignedTableSubsetsFolder)) {
alignedTableCheck <- TRUE
##
xNon0Xcol <- IDSL.IPA::loadRdata(paste0(tempAlignedTableSubsetsFolder, "/", CSA_hrms_file, "/xNon0Xcol.Rdata"))
peakXcolID <- IDSL.IPA::loadRdata(paste0(tempAlignedTableSubsetsFolder, "/", CSA_hrms_file, "/peakXcolSubset.Rdata"))
correlationList <- IDSL.IPA::loadRdata(paste0(tempAlignedTableSubsetsFolder, "/", CSA_hrms_file, "/correlationListSubset.Rdata"))
##
IPApeakID <- peakXcolID[xNon0Xcol]
orderIPApeakID <- order(peaklist[IPApeakID, 4], decreasing = TRUE)
correlationList <- correlationList[orderIPApeakID]
IPApeakID <- IPApeakID[orderIPApeakID]
nPeaks <- length(IPApeakID)
} else {
alignedTableCheck <- FALSE
##
IPApeakID <- order(peaklist[, 4], decreasing = TRUE)
nPeaks <- dim(peaklist)[1]
}
scanNumberStartPL <- peaklist[IPApeakID, 1]
scanNumberEndPL <- peaklist[IPApeakID, 2]
mz12CIPA <- peaklist[IPApeakID, 8]
RTIPA <- peaklist[IPApeakID, 3]
IntIPA <- peaklist[IPApeakID, 4]
mz13CIPA <- peaklist[IPApeakID, 10]
SNRbaseline <- peaklist[IPApeakID, 21]
##############################################################################
i <- 1
counterCSAblock <- 0
listCSAalignedTable <- vector(mode = "list", nPeaks)
while (i < nPeaks) {
if ((IPApeakID[i] != 0) & (SNRbaseline[i] >= minSNRbaseline)) {
##
if (alignedTableCheck) {
listCL <- correlationList[[i]]
listCL <- peakXcolID[listCL]
listCL <- listCL[listCL != 0]
xCL <- do.call(c, lapply(listCL, function(j) {
which(IPApeakID == j)
}))
##
if (length(xCL) > 0) {
xPLretentionTime <- which((abs(RTIPA[xCL] - RTIPA[i]) <= RTtolerance) & (IPApeakID[xCL] != 0))
LxPLretentionTime <- length(xPLretentionTime)
if (LxPLretentionTime > 0) {
xPLretentionTime <- xCL[xPLretentionTime]
} else {
LxPLretentionTime <- 0
}
} else {
LxPLretentionTime <- 0
}
} else {
xPLretentionTime <- which((abs(RTIPA - RTIPA[i]) <= RTtolerance) & (IPApeakID != 0))
xPLretentionTime <- setdiff(xPLretentionTime, i)
LxPLretentionTime <- length(xPLretentionTime)
}
##
if (LxPLretentionTime >= minNumCSApeaks) {
mz_fragment <- c(mz12CIPA[xPLretentionTime], mz13CIPA[i], mz13CIPA[xPLretentionTime])
peakID <- c(xPLretentionTime, rep(0, (LxPLretentionTime + 1)))
########################################################################
nCSAfragmentIons <- length(mz_fragment)
if (nCSAfragmentIons >= minNumCSApeaks) {
######################################################################
iMzCSAions <- c(mz12CIPA[i], mz_fragment)
ionRangeDifference <- max(iMzCSAions) - min(iMzCSAions)
if (ionRangeDifference >= minIonRangeDifference) {
iMzCSA12Cions <- mz12CIPA[c(i, xPLretentionTime)]
##
nMzCSA12Cions <- length(which(diff(iMzCSA12Cions[order(iMzCSA12Cions, decreasing = FALSE)]) >= 2.006709670672))
if (nMzCSA12Cions >= minNumCSApeaks) {
##################################################################
scanNumberApex <- which.min(abs(retentionTime - RTIPA[i]))
scanNumberStart <- scanNumberStartPL[i] - (scanTolerance + 1)
if (scanNumberStart < 1) {
scanNumberStart <- 1
}
scanNumberEnd <- scanNumberEndPL[i] + (scanTolerance + 1)
if (scanNumberEnd > LretentionTime) {
scanNumberEnd <- LretentionTime
}
chromatogramMatrixPrecursor <- XIC(aggregatedSpectraList, scanNumberStart, scanNumberEnd, mz12CIPA[i], massError)
if (!is.null(chromatogramMatrixPrecursor)) {
chromatogramMatrixPrecursor <- cbind(chromatogramMatrixPrecursor[, 1], chromatogramMatrixPrecursor[, 3], chromatogramMatrixPrecursor[, 3])
SZC <- nrow(chromatogramMatrixPrecursor)
##
chromatogramMatrixPrecursor <- data.frame(chromatogramMatrixPrecursor)
colnames(chromatogramMatrixPrecursor) <- c("scanNumber", "smoothChromatogram", "rawChromatogram")
loess_SZC <- loess(smoothChromatogram ~ scanNumber, data = chromatogramMatrixPrecursor, span = smoothingWindowMS1/SZC, control = loess.control(surface = "direct"))
chromatogramMatrixPrecursor[, 2] <- predict(loess_SZC)
xNeg <- which(chromatogramMatrixPrecursor[, 2] < 0)
chromatogramMatrixPrecursor[xNeg, 2] <- 0
##
if (chromatogramMatrixPrecursor[1, 1] == 1) {
chromatogramMatrixPrecursor[1, 2] <- 0
}
if (chromatogramMatrixPrecursor[SZC, 1] == LretentionTime) {
chromatogramMatrixPrecursor[SZC, 2] <- 0
}
##
Segment <- chromatographicPeakDetector(chromatogramMatrixPrecursor[, 2])
if (!is.null(Segment)) {
Segment1 <- Segment + chromatogramMatrixPrecursor[1, 1] - 1
xSegApex <- which(Segment1[, 1] <= scanNumberApex & Segment1[, 2] >= scanNumberApex)
LxSegApex <- length(xSegApex)
if (LxSegApex > 0) {
if (LxSegApex > 1) {
sX <- do.call(c, lapply(xSegApex, function(s) {
xSH <- which.max(chromatogramMatrixPrecursor[Segment[s, 1]:Segment[s, 2], 3])
xSH[1] + Segment[s, 1] - 1
}))
xMax <- which.max(chromatogramMatrixPrecursor[sX, 3])
xSegApex <- xSegApex[xMax[1]]
}
##
chromatogramMatrixPrecursor <- chromatogramMatrixPrecursor[Segment[xSegApex, 1]:Segment[xSegApex, 2], ]
##
RT_chrom_precursor <- retentionTime[chromatogramMatrixPrecursor[, 1]]
Int_chrom_precursor <- chromatogramMatrixPrecursor[, 2]
##
W_precursor <- spline(RT_chrom_precursor, Int_chrom_precursor , n = nSpline, method = "fmm",
xmin = RT_chrom_precursor[1], xmax = RT_chrom_precursor[length(RT_chrom_precursor)], ties = mean) # To smooth the curve for derivative calculations
RT_spline_precursor <- W_precursor[[1]]
Int_spline_precursor <- W_precursor[[2]]
#
x_topRatioPeakHeight <- which(Int_spline_precursor/max(Int_spline_precursor) >= (1 - topRatioPeakHeight))
RT_spline_precursor <- RT_spline_precursor[x_topRatioPeakHeight]
Int_spline_precursor <- Int_spline_precursor[x_topRatioPeakHeight]
############################################################
CSA_EICs <- vector(mode = "list", nCSAfragmentIons)
indexCSAfragmentIons <- rep(0, nCSAfragmentIons)
numCSApeaks <- 0
##
L_12 <- (nCSAfragmentIons + 1)/2
k <- 1
mz13CIPAcheck <- TRUE
minNumCSApeaksPass <- FALSE
##
while (k <= nCSAfragmentIons) {
##
if (mz13CIPAcheck) {
if (k == L_12) {
mz13CIPAcheck <- FALSE
##
if (numCSApeaks >= minNumCSApeaks) {
##
index12C <- c(1, (indexCSAfragmentIons[1:numCSApeaks] + 1))
orderMZ12C <- order(iMzCSA12Cions[index12C], decreasing = FALSE)
index12C <- index12C[orderMZ12C]
nMzCSA12Cions <- length(which(diff(iMzCSA12Cions[index12C]) >= 2.006709670672))
if (nMzCSA12Cions >= minNumCSApeaks) {
minNumCSApeaksPass <- TRUE
}
}
##
if (!minNumCSApeaksPass) {
k <- nCSAfragmentIons
peakID[k] <- NA
}
}
}
##
if (!is.na(peakID[k])) {
##
chromatogramMatrixFragment <- XIC(aggregatedSpectraList, scanNumberStart, scanNumberEnd, mz_fragment[k], massError)
if (!is.null(chromatogramMatrixFragment)) {
chromatogramMatrixFragment <- cbind(chromatogramMatrixFragment[, 1], chromatogramMatrixFragment[, 3], chromatogramMatrixFragment[, 3])
##
Top_ScN <- (scanNumberStart - smoothingWindowMS1 - 1):(scanNumberStart - 1)
x_Top <- which(Top_ScN > 0)
L_Top <- length(x_Top)
if (L_Top > 0) {
Top_chrom_builder <- cbind(Top_ScN[x_Top], rep(0, L_Top), rep(0, L_Top))
} else {
Top_chrom_builder <- NULL
}
Bottom_ScN <- (scanNumberEnd + 1):(scanNumberEnd + smoothingWindowMS1 + 1)
x_Bottom <- which(Bottom_ScN <= LretentionTime)
L_Bottom <- length(x_Bottom)
if (L_Bottom > 0) {
Bottom_chrom_builder <- cbind(Bottom_ScN[x_Bottom], rep(0, L_Bottom), rep(0, L_Bottom))
} else {
Bottom_chrom_builder <- NULL
}
chromatogramMatrixFragment <- rbind(Top_chrom_builder, chromatogramMatrixFragment, Bottom_chrom_builder)
SZC <- nrow(chromatogramMatrixFragment)
## Smoothing the chromatogram trace over a smoothing window
chromatogramMatrixFragment <- data.frame(chromatogramMatrixFragment)
colnames(chromatogramMatrixFragment) <- c("scanNumber", "smoothChromatogram", "rawChromatogram")
loess_SZC <- loess(smoothChromatogram ~ scanNumber, data = chromatogramMatrixFragment, span = smoothingWindowMS1/SZC, control = loess.control(surface = "direct"))
chromatogramMatrixFragment[, 2] <- predict(loess_SZC)
xNeg <- which(chromatogramMatrixFragment[, 2] < 0)
chromatogramMatrixFragment[xNeg, 2] <- 0
##
if (chromatogramMatrixFragment[1, 1] == 1) {
chromatogramMatrixFragment[1, 2] <- 0
}
if (chromatogramMatrixFragment[SZC, 1] == LretentionTime) {
chromatogramMatrixFragment[SZC, 2] <- 0
}
## Peak detection module
Segment <- chromatographicPeakDetector(chromatogramMatrixFragment[, 2])
if (!is.null(Segment)) {
Segment2 <- Segment + chromatogramMatrixFragment[1, 1] - 1
xSegApex <- which(Segment2[, 1] <= scanNumberApex & Segment2[, 2] >= scanNumberApex)
LxSegApex <- length(xSegApex)
if (LxSegApex > 0) {
if (LxSegApex > 1) {
sX <- do.call(c, lapply(xSegApex, function(s) {
xSH <- which.max(chromatogramMatrixFragment[Segment[s, 1]:Segment[s, 2], 3])
xSH[1] + Segment[s, 1] - 1
}))
xMax <- which.max(chromatogramMatrixFragment[sX, 3])
xSegApex <- xSegApex[xMax[1]]
}
##
chromatogramMatrixFragment <- chromatogramMatrixFragment[Segment[xSegApex, 1]:Segment[xSegApex, 2], ]
##
height_fragment <- max(chromatogramMatrixFragment[, 3]) # raw intensity
if (height_fragment > 0) {
##
RT_chrom_fragment <- retentionTime[chromatogramMatrixFragment[, 1]]
Int_chrom_fragment <- chromatogramMatrixFragment[, 2] # smooth chromatogram
##
Int_spline_fragment <- approx(RT_chrom_fragment, Int_chrom_fragment, RT_spline_precursor, method = "linear", 0, 0, rule = 2, f = 0, ties = mean)[[2]]
##
pearsonRHO <- suppressWarnings(cor(Int_spline_precursor, Int_spline_fragment, method = "pearson"))
##
if (!is.na(pearsonRHO)) {
if (pearsonRHO >= pearsonRHOthreshold) {
if (plotEICcheck) {
L_chrom_fragment <- length(Int_chrom_fragment)
CSAEICdata <- cbind(rep(k, L_chrom_fragment), RT_chrom_fragment, Int_chrom_fragment)
} else {
CSAEICdata <- NULL
}
##
xTopRatioPeakHeight <- which(chromatogramMatrixFragment[, 3]/height_fragment >= (1 - topRatioPeakHeight))
height_fragment <- sum(chromatogramMatrixFragment[xTopRatioPeakHeight, 3]) # to use an integrated intensity of the raw chromatogram
##
CSA_fragments <- c(mz_fragment[k], height_fragment, pearsonRHO)
CSA_EICs[[k]] <- list(CSAEICdata, CSA_fragments, peakID[k])
}
##
if (is.null(CSA_EICs[[k]])) {
if (k < L_12) {
k1 <- k + L_12
peakID[k1] <- NA
}
} else {
numCSApeaks <- numCSApeaks + 1
indexCSAfragmentIons[numCSApeaks] <- k
}
}
}
}
}
}
}
k <- k + 1
}
############################################################
if (minNumCSApeaksPass) {
indexCSAfragmentIons <- indexCSAfragmentIons[indexCSAfragmentIons != 0]
##
CSA_fragments <- do.call(rbind, lapply(indexCSAfragmentIons, function(j) {
CSA_EICs[[j]][[2]]
}))
##
xTopRatioPeakHeight <- which(chromatogramMatrixPrecursor[, 3]/max(chromatogramMatrixPrecursor[, 3]) >= (1 - topRatioPeakHeight))
height_precursor <- sum(chromatogramMatrixPrecursor[xTopRatioPeakHeight, 3]) # to use an integrated intensity of the raw chromatogram
IPA12Cmz <- c(mz12CIPA[i], height_precursor, 1)
CSAfragmentationList <- rbind(IPA12Cmz, CSA_fragments)
ionRangeDifference <- max(CSAfragmentationList[, 1]) - min(CSAfragmentationList[, 1])
##
if (ionRangeDifference >= minIonRangeDifference) {
########################################################
jIPApeakID <- do.call(c, lapply(indexCSAfragmentIons, function(j) {
if (CSA_EICs[[j]][[3]] != 0) {
IPApeakID[CSA_EICs[[j]][[3]]]
} else {
0
}
}))
jIPApeakID <- c(IPApeakID[i], jIPApeakID)
CSAfragmentationList <- cbind(CSAfragmentationList, jIPApeakID)
##
CSAfragmentationList <- matrix(CSAfragmentationList[order(CSAfragmentationList[, 2], decreasing = TRUE), ], ncol = 4)
##
spectralEntropy <- round(spectral_entropy_calculator(CSAfragmentationList[, 1:2], allowedWeightedSpectralEntropy = TRUE, noiseRemovalRatio = 1e-16)[[1]], 5)
##
numCSApeaks <- numCSApeaks + 1
counterCSAblock <- counterCSAblock + 1
##
CSA_list <- cbind(rep(counterCSAblock, numCSApeaks), rep(mz12CIPA[i], numCSApeaks), rep(RTIPA[i], numCSApeaks),
rep(IntIPA[i], numCSApeaks), CSAfragmentationList[, 1:2], rep(spectralEntropy, numCSApeaks),
rep(MS1polarity[scanNumberApex], numCSApeaks), rep(precursorCE[scanNumberApex], numCSApeaks), CSAfragmentationList[, 3:4])
##
listCSAalignedTable[[counterCSAblock]] <- CSA_list
########################################################
kIPApeakID <- do.call(c, lapply(indexCSAfragmentIons, function(k) {CSA_EICs[[k]][[3]]}))
kIPApeakID <- kIPApeakID[kIPApeakID != 0]
kIPApeakID <- c(i, kIPApeakID)
detectedIPApeaks <- IPApeakID[kIPApeakID]
IPApeakID[kIPApeakID] <- 0
########################################################
allowedSelectedIPApeaks <- TRUE
if (!is.null(selectedIPApeaks)) {
xSelectedIPApeaks <- which(selectedIPApeaks %in% detectedIPApeaks)
if (length(xSelectedIPApeaks) > 0) {
selectedIPApeaks[xSelectedIPApeaks] <- 0
} else {
allowedSelectedIPApeaks <- FALSE
}
}
##
if (allowedSelectedIPApeaks) {
######################################################
if (plotEICcheck) {
CSAEICdata <- do.call(rbind, lapply(indexCSAfragmentIons, function(j) {
CSA_EICs[[j]][[1]]
}))
##
yMaxLimPlot <- max(c(Int_chrom_precursor, CSAEICdata[, 3]))
##
xLinesDiff <- c(0, which(abs(diff(CSAEICdata[, 1])) > 0), nrow(CSAEICdata))
nLines <- length(xLinesDiff)
nLines1 <- nLines - 1
##
legText <- rep("", nLines)
legText[1] <- paste0("* m/z = ", round(mz12CIPA[i], 5))
colors <- c("black", rainbow(nLines1, alpha = 1))
legCol <- rep("", nLines)
legCol[1] <- colors[1]
##
orderMSP <- order(CSA_fragments[, 2], decreasing = TRUE)
orderLines <- do.call(rbind, lapply(2:nLines, function(p) {
c((xLinesDiff[p - 1] + 1), xLinesDiff[p])
}))
orderLines <- matrix(orderLines[orderMSP, ], ncol = 2)
##
alignedEICfilename <- paste0(outputCSAeic, "/CSApeakGrouping_ID_", counterCSAblock, "_RT_", RTIPA[i], ".png")
png(alignedEICfilename, width = 16, height = 8, units = "in", res = 100)
##
par(mar = c(5.1, 4.1, 4.1, 13.8))
plot(RT_chrom_precursor, Int_chrom_precursor, type = "l", ylim = c(0, yMaxLimPlot*1.01), lwd = 4, col = colors[1], cex = 4, yaxt = "n", xlab = "", ylab = "")
##
pCounter <- 1
for (p in 1:nLines1) {
pCounter <- pCounter + 1
##
xLines <- seq(orderLines[p, 1], orderLines[p, 2], 1)
##
lines(CSAEICdata[xLines, 2], CSAEICdata[xLines, 3], lwd = 2, col = colors[pCounter], cex = 4)
##
legText[pCounter] <- paste0("m/z = ", round(mz_fragment[CSAEICdata[xLines[1], 1]], 5))
legCol[pCounter] <- colors[pCounter]
}
##
mtext(text = paste0("S = ", spectralEntropy), side = 3, adj = 1, line = 0.25, cex = 1.0)
mtext("Retention time (min)", side = 1, adj = 0.5, line = 2, cex = 1.35)
mtext("Intensity", side = 2, adj = 0.50, line = 1, cex = 1.35)
mtext(CSA_hrms_file, side = 3, adj = 0, line = 0.25, cex = 1.0)
legend(x = "topright", inset = c(-0.20, 0), legend = legText, lwd = c(4, rep(2, nLines1)), cex = 1.125, bty = "n",
col = legCol, seg.len = 1, x.intersp = 0.5, y.intersp = 0.9, xpd = TRUE)
##
dev.off()
}
}
}
}
}
}
}
}
}
}
}
}
##
if (!is.null(selectedIPApeaks)) {
if (length(which(selectedIPApeaks != 0)) == 0) {
break
}
}
##
x_i <- which(IPApeakID[(i + 1):nPeaks] != 0)
if (length(x_i) > 0) {
i <- i + x_i[1]
} else {
i <- nPeaks
}
}
##
if (counterCSAblock > 0) {
CSA_peaklist <- do.call(rbind, lapply(listCSAalignedTable, function(i) {i}))
##
CSA_peaklist <- data.frame(CSA_peaklist)
CSA_peaklist[, 1] <- as.numeric(CSA_peaklist[, 1])
CSA_peaklist[, 5] <- round(as.numeric(CSA_peaklist[, 5]), 5)
CSA_peaklist[, 6] <- round(as.numeric(CSA_peaklist[, 6]), 0)
CSA_peaklist[, 10] <- round(as.numeric(CSA_peaklist[, 10]), 2)
CSA_peaklist[, 11] <- as.numeric(CSA_peaklist[, 11])
##
if (alignedTableCheck) {
##
xXcolID <- do.call(c, lapply(CSA_peaklist[, 11], function(i) {
if (i != 0) {
which(peakXcolID == i)
} else {
0
}
}))
##
CSA_peaklist <- cbind(CSA_peaklist, xXcolID)
}
##
} else {
if (alignedTableCheck) {
CSA_peaklist <- data.frame(matrix(rep(0, 12), nrow = 1))
} else {
CSA_peaklist <- data.frame(matrix(rep(0, 11), nrow = 1))
}
}
##
rownames(CSA_peaklist) <- NULL
##
if (alignedTableCheck) {
colnames(CSA_peaklist) <- c("CSApeakGrouping_ID", "PrecursorMZ", "Precursor_RT", "Precursor_Intensity",
"CSA_mz_fragment", "CSA_int_fragment", "Weighted_spectral_entropy_0noiseRemoval",
"Ion_mode", "Collision_energy", "Pearson_rho", "IDSL.IPA_PeakID", "IDSL.IPA_AlignedTable_PeakIDs")
} else {
colnames(CSA_peaklist) <- c("CSApeakGrouping_ID", "PrecursorMZ", "Precursor_RT", "Precursor_Intensity",
"CSA_mz_fragment", "CSA_int_fragment", "Weighted_spectral_entropy_0noiseRemoval",
"Ion_mode", "Collision_energy", "Pearson_rho", "IDSL.IPA_PeakID")
}
##
return(CSA_peaklist)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.