example_raw_proj | R Documentation |
Example of the workflow with add_simulation
), implementing the method described in the original publication
(Rousset et al. 2017 <doi:10.1111/1755-0998.12627>), modified to use projectors.
if (Infusion.getOption("example_maxtime")>117) {
## Normal(mu,sd) model, with inefficient raw summary statistics:
## To illustrate that case we transform normal random deviates rnorm(,mu,sd)
## so that the mean of transformed sample is not sufficient for mu,
## and the variance of transformed sample is not sufficient for sd.
blurred <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))
}
set.seed(123)
dSobs <- blurred(mu=4,s2=1,sample.size=20) ## stands for the actual data to be analyzed
## Sampling design as in canonical example
parsp <- init_grid(lower=c(mu=2.8,s2=0.4,sample.size=20),
upper=c(mu=5.2,s2=2.4,sample.size=20))
# simulate distributions
dsimuls <- add_simulation(,Simulate="blurred", parsTable=parsp)
## Use projection to construct better summary statistics for each each parameter
mufit <- project("mu",stats=c("mean","var"),data=dsimuls)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls)
## apply projections on simulated statistics
corrSobs <- project(dSobs,projectors=list("MEAN"=mufit,"VAR"=s2fit))
corrSimuls <- project(dsimuls,projectors=list("MEAN"=mufit,"VAR"=s2fit))
## Analyze 'projected' data as any data (cf canonical example)
densb <- infer_logLs(corrSimuls,stat.obs=corrSobs)
} else data(densb)
#########
if (Infusion.getOption("example_maxtime")>10) {
slik <- infer_surface(densb) ## infer a log-likelihood surface
slik <- MSL(slik) ## find the maximum of the log-likelihood surface
}
if (Infusion.getOption("example_maxtime")>500) {
slik <- refine(slik,10, update_projectors=TRUE) ## refine iteratively
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.