example_reftable | R Documentation |
Examples of workflow with a reference table produced by add_reftable
, to be preferred the primitive method described in the first publication of Infusion.
if (Infusion.getOption("example_maxtime")>56) {
## Normal(mu,sd) model, with inefficient raw summary statistics:
## To illustrate that case we transform normal random deviates rnorm(,mu,sd)
## so that the mean of transformed sample is not sufficient for mu,
## and the variance of transformed sample is not sufficient for sd.
blurred <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))
}
## simulated data which stands for the actual data to be analyzed:
set.seed(123)
dSobs <- blurred(mu=4,s2=1,sample.size=40)
## Construct initial reference table:
parsp_j <- init_reftable(lower=c(mu=2.5, s2=0.25, sample.size=40),
upper=c(mu=5.2, s2=2.4, sample.size=40))
dsimuls <- add_reftable(,Simulate="blurred", parsTable=parsp_j,verbose=FALSE)
#- When no 'Simulate' function is provided,
#- but only a data.frame 'toydf' of simulations,
#- a formal reference table can be produced by
# dsimuls <- structure(toydf, LOWER=c(mu=2,s2=0,sample.size=40))
# dsimuls <- add_reftable(dsimuls)
#- where the 'LOWER' attribute tells
#- the parameters apart from the summary statistics.
## Construct projections
mufit <- project("mu",stats=c("mean","var"),data=dsimuls,verbose=FALSE)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls,verbose=FALSE)
dprojectors <- list(MEAN=mufit,VAR=s2fit)
## Apply projections on simulated statistics and 'data':
dprojSimuls <- project(dsimuls,projectors=dprojectors,verbose=FALSE)
dprojSobs <- project(dSobs,projectors=dprojectors)
## Summary-likelihood inference:
# Infer log-likelihood surface
slik_j <- infer_SLik_joint(dprojSimuls,stat.obs=dprojSobs,verbose=TRUE)
# Find maximum, confidence intervals...
slik_j <- MSL(slik_j)
# Convenience function for plotting projections...
plot_proj(slik_j)
plot_importance(slik_j, parm="mu")
# ... and for computing likelihoods for new parameters and/or data:
summLik(slik_j, parm=slik_j$MSL$MSLE+0.1)
## refine estimates iteratively
maxrefines <- 2L
# See get_workflow_design() for a suggested number of refine() calls,
# typically more than the 2 refine calls shown in this small example.
for(it in 1:maxrefines) slik_j <-
refine(slik_j, eval_RMSEs=it==maxrefines, CIs=it==maxrefines)
##
if (Infusion.getOption("example_maxtime")>99) { # Post-fit procedures,
# all with distinct documentation:
plot(slik_j)
profile(slik_j,c(mu=4)) ## profile summary logL for given parameter value
confint(slik_j,"mu") ## compute 1D confidence interval for given parameter
plot1Dprof(slik_j,pars="s2",gridSteps=40) ## 1D profile
summary(slik_j) # or print()
logLik(slik_j)
SLRT(slik_j, h0=slik_j$MSL$MSLE+0.1, nsim = 100L) # LRT
SLRT(slik_j, h0=slik_j$MSL$MSLE[1]+0.1, nsim = 100L) # profile LRT
goftest(slik_j) # goodness of fit test
# Low-level predict() method (rarely directly used, but documented)
predict(slik_j, newdata = slik_j$MSL$MSLE) # the 'data' are here parameters!
# 'ranger' projections can take a lot of memory. One can reduce them by...
# deforest_projectors(slik_j)
# ...before...
# save(slik_j, file="slik_j")
# They will be rebuilt on the fly if needed for further iterations.
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.