Nothing
# Copied from mosaic do.R in order to separate it from other dependencies
# that prevent mosaic from working with WebR
utils::globalVariables(c('.row'))
require(parallel, quietly = TRUE)
require(compiler, quietly = TRUE)
parallel::detectCores()
NA
# Set seed in parallel compatible way
#
# When the parallel package is used, setting the RNG seed for reproducibility
# involves more than simply calling [set.seed()]. `set.rseed` takes
# care of the additional overhead.
#
# @param seed seed for the random number generator
# @details
# If the `parallel` package is not on the search path, then [set.seed()] is called.
# If `parallel` is on the search path, then the RNG kind is set to `"L'Ecuyer-CMRG"`,
# the seed is set and `mc.reset.stream` is called.
#
# @examples
# # These should give identical results, even if the `parallel' package is loaded.
# set.rseed(123); do(3) * resample(1:10, 2)
# set.rseed(123); do(3) * resample(1:10, 2)
# ## @export
mosaic_set.rseed <- function(seed) {
if ("package:parallel" %in% search()) {
set.seed(seed, kind = "L'Ecuyer-CMRG")
parallel::mc.reset.stream()
} else {
set.seed(seed)
}
}
#
# @keywords internal
# @details
# `.make.data.frame` converts things to a data frame
# @param x object to be converted
# @return a data frame
.make.data.frame <- function( x ) {
if (is.data.frame(x)) return(x)
if (is.vector(x)) {
nn <- names(x)
result <- as.data.frame( matrix(x, nrow=1) )
if (! is.null(nn) ) names(result) <- nn
return(result)
}
return(as.data.frame(x))
}
null2na <- function(x) if (is.null(x)) NA else x
# Repeater objects
#
# Repeater objects can be used with the `*` operator to repeat
# things multiple time using a different syntax and different output
# format from that used by, for example, [replicate()].
#
#
# @name repeater-class
# @seealso [do()]
# @section Slots:
# \describe{
# \item{`n`:}{Object of class `"numeric"` indicating how many times to repeat something.}
# \item{`cull`:}{Object of class `"function"` that culls the output from each repetition.}
# \item{`mode`:}{Object of class `"character"` indicating the output mode
# ('default', 'data.frame', 'matrix', 'vector', or 'list'). For most purposes 'default' (the default)
# should suffice.}
# \item{`algorithm`:}{an algorithm number.}
# \item{`parallel`:}{a logical indicating whether to attempt parallel execution.}
# }
# old version
if(FALSE) {
.merge_data_frames <- function(a, b) {
a <- .make.data.frame(a)
b <- .make.data.frame(b)
if (nrow(b) < 1) return (a)
if (nrow(a) < 1) return (b)
a$mosaic_merge_id <- paste('A',1:nrow(a))
b$mosaic_merge_id <- paste('B',1:nrow(b))
result <- merge(a,b,all=TRUE)
w <- which(names(result) == 'mosaic_merge_id')
result <- result[, -w]
return(result)
}
}
#
# @keywords internal
# @details `.merge_data_frames` is a wrapper around merge
#
# @param a a data frame
# @param b a data frame
#
# @return a data frame
.merge_data_frames = function(a,b) {
a <- .make.data.frame(a)
b <- .make.data.frame(b)
if (nrow(b) < 1) return (a)
if (nrow(a) < 1) return (b)
missing.from.b = setdiff(names(a),names(b))
missing.from.a = setdiff(names(b),names(a))
for (var in missing.from.b) b[[var]] = NA
for (var in missing.from.a) a[[var]] = NA
dplyr::bind_rows(a,b)
}
#
# @keywords internal
# @details
# `.squash_names` squashes names of a data frame into a single string
#
# @param object an object
# @param sep a character
#
# @return a character vector
.squash_names <- function(object,sep=":") {
if ( ncol(object) < 1 ) {return(rep("",nrow(object)))}
result <- object[,1]
if ( ncol(object) < 2 ) {return(as.character(result))}
for (c in 2:ncol(object)) {
result <- paste(result, as.character(object[,c]), sep=sep)
}
return(result)
}
#
# @param x an object created by `do`.
.list2tidy.data.frame <- function (l) {
# see if we really just have a vector
ul <- unlist( l )
if ( length(ul) == length(l) ) {
result <- data.frame(..result.. = as.vector(ul))
row.names(result) <- NULL
if( !is.null(names(l[[1]])) ) names(result) <- names(l[[1]])
return(result)
}
# if each element is a data frame, combine them with bind_rows
if ( all( sapply( l, is.data.frame ) ) ) {
return(
lapply(l, function(x) {mutate(x, .row= 1:n())}) %>%
dplyr::bind_rows() %>%
mutate(.index = c(1, 1 + cumsum( diff(.row) != 1 )))
)
}
# If rbind() works, do it
tryCatch(
return ( as.data.frame( do.call( rbind, l) ) ),
error=function(e) {}
)
if (all (sapply(l, length) ) == length(l[[1]]) ) {
result <- as.data.frame( matrix( ul, nrow=length(l) ) )
names(result) <- names(l[[1]])
return(result)
}
# nothing worked. Just return the list as is.
return( l )
}
#' Cull objects used with do()
#'
#' The `do()` function facilitates easy replication for
#' randomization tests and bootstrapping (among other things). Part of what
#' makes this particularly useful is the ability to cull from the objects
#' produced those elements that are useful for subsequent analysis.
#' `cull_for_do` does this culling. It is generic, and users
#' can add new methods to either change behavior or to handle additional
#' classes of objects.
#'
#' @param object an object to be culled
#' @param ... additional arguments (currently ignored)
#'
#' @details When `do(n) * expression` is evaluated, `expression`
#' is evaluated `n` times to produce a list of `n` result objects.
#' `cull_for_do` is then applied to each element of this list to
#' extract from it the information that should be stored. For example,
#' when applied to a object of class `"lm"`,
#' the default `cull_for_do` extracts the coefficients, coefficient
#' of determinism, an the estimate for the variance, etc.
#'
#'
#' @examples
#' Clock_auction |> model_train(price ~ resample(bidders)) |>
#' R2() |> trials(times=10)
mosaic_cull_for_do <- function(object, ...) {
UseMethod("mosaic_cull_for_do")
}
mosaic_cull_for_do.default <- function(object, ...) {
object
}
mosaic_cull_for_do.fitdistr <- function(object, ...) {
est <- object$estimate
names(est) <- paste0(names(est), ".est")
se <- object$sd
names(se) <- paste0(names(se), ".se")
c(est, se)
}
mosaic_cull_for_do.aov <- function(object, ...) {
mosaic_cull_for_do(stats::anova(object))
}
mosaic_cull_for_do.anova <- function(object, ...) {
res <- as.data.frame(object)
res <- cbind (data.frame(source=row.names(res)), res)
names(res)[names(res) == "Df"] <- "df"
names(res)[names(res) == "Sum Sq"] <- "SS"
names(res)[names(res) == "Mean Sq"] <- "MS"
names(res)[names(res) == "F value"] <- "F"
names(res)[names(res) == "Pr(>F)"] <- "pval"
names(res)[names(res) == "Sum of Sq"] <- "diff.SS"
names(res)[names(res) == "Res.Df"] <- "res.df"
return(res)
return( data.frame(
SSTotal= sum(object$`Sum Sq`),
SSModel= object$`Sum Sq`[1],
SSError= object$`Sum Sq`[2],
MSTotal= sum(object$`Sum Sq`),
MSModel= object$`Mean Sq`[1],
MSError= object$`Mean Sq`[2],
F=object$`F value`[1],
dfModel=object$Df[1],
dfError=object$Df[2],
dfTotal=sum(object$Df)
) )
}
mosaic_cull_for_do.table <- function(object, ...) {
result <- data.frame(object)
res <- result[[ncol(result)]]
nms <- as.character(result[[1]])
if (ncol(result) > 2) {
for (k in 2:(ncol(result)-1)) {
nms <- paste(nms, result[[k]],sep=".")
}
}
names(res) <- nms
return(res)
}
mosaic_cull_for_do.aggregated.stat <- function(object, ...) {
result <- object
res <- as.vector(result[, "S"]) # ncol(result)]
names(res) <-
paste( attr(object, 'stat.name'),
.squash_names(object[,1:(ncol(object)-3),drop=FALSE]), sep=".")
return(res)
}
mosaic_cull_for_do.lm <- function(object, ...) {
regression_summary(object)
}
mosaic_cull_for_do.htest <- function(object, ...) {
if (is.null(object$conf.int)) {
result <- data.frame(
statistic = null2na(object$statistic),
parameter = null2na(object$parameter),
p.value = null2na(object$p.value),
method = null2na(object$method),
alternative = null2na(object$alternative),
data = null2na(object$data.name)
)
} else {
result <- data.frame(
statistic = null2na(object$statistic),
parameter = null2na(object$parameter),
p.value = null2na(object$p.value),
conf.level = attr(object$conf.int,"conf.level"),
lower = object$conf.int[1],
upper = object$conf.int[2],
method = null2na(object$method),
alternative = null2na(object$alternative),
data = null2na(object$data.name)
)
}
if ( !is.null(names(object$statistic)) )
names(result)[1] <- names(object$statistic)
if ( !is.null(names(object$parameter)) )
names(result)[2] <- names(object$parameter)
return(result)
}
# if (inherits(object, 'table') ) {
# nm <- names(object)
# result <- as.vector(object)
# names(result) <- nm
# return(result)
# }
mosaic_cull_for_do.cointoss <- function(object, ...) {
return( c(n=attr(object,'n'),
heads=sum(attr(object,'sequence')=='H'),
tails=sum(attr(object,'sequence')=='T'),
prop=sum(attr(object,'sequence')=="H") / attr(object,'n')
) )
}
mosaic_cull_for_do.matrix <- function(object, ...) {
if (ncol(object) == 1) {
nn <- rownames(object)
object <- as.vector(object)
if (is.null(nn)) {
names(object) <- paste('v',1:length(object),sep="")
} else {
names(object) <- nn
}
return(object)
}
if (nrow(object) > 1) {
res <- as.data.frame(object)
res[[".row"]] <- row.names(object)
return(res)
}
# if we get here, we have a 1-row or empty matrix
row.names(object) <- NULL
object
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.