Nothing
generic.predict.ltrcrfsrc <-
function(object,
newdata,
ensemble = NULL,
m.target = NULL,
importance = FALSE,
get.tree = NULL,
block.size = NULL,
importance.xvar,
subset = NULL,
na.action = c("na.omit", "na.impute"),
outcome = c("train", "test"),
proximity = FALSE,
forest.wt = FALSE,
ptn.count = 0,
distance = FALSE,
var.used = c(FALSE, "all.trees", "by.tree"),
split.depth = c(FALSE, "all.trees", "by.tree"),
seed = NULL,
do.trace = TRUE,
membership = FALSE,
statistics = FALSE,
...)
{
univariate.nomenclature <- TRUE
## get any hidden options
user.option <- list(...)
terminal.qualts <- is.hidden.terminal.qualts(user.option)
terminal.quants <- is.hidden.terminal.quants(user.option)
perf.type <- is.hidden.perf.type(user.option)
rfq <- is.hidden.rfq(user.option)
gk.quantile <- is.hidden.gk.quantile(user.option)
prob <- is.hidden.prob(user.option)
prob.epsilon <- is.hidden.prob.epsilon(user.option)
## set the family
family <- object$family
## incoming parameter checks: all are fatal
if (missing(object)) {
stop("object is missing!")
}
## incoming object must be a grow forest or a forest object
# if (sum(inherits(object, c("rfsrc", "grow"), TRUE) == c(1, 2)) != 2 &
# sum(inherits(object, c("rfsrc", "forest"), TRUE) == c(1, 2)) != 2)
# stop("this function only works for objects of class `(rfsrc, grow)' or '(rfsrc, forest)'")
# ## grow forests must have true forest information
# if (sum(inherits(object, c("rfsrc", "grow"), TRUE) == c(1, 2)) == 2) {
# if (is.forest.missing(object)) {
# stop("Forest information for prediction is missing. Re-run rfsrc (grow call) with forest=TRUE")
# }
# }
## verify the importance option
importance <- match.arg(as.character(importance)[1], c(FALSE, TRUE,
"none", "permute", "random", "anti",
"permute.joint", "random.joint", "anti.joint"))
if (grepl("joint", importance)) {
vimp.joint <- TRUE
}
else {
vimp.joint <- FALSE
}
## pull the x-variable and y-outcome names from the grow object
xvar.names <- object$xvar.names
yvar.names <- object$yvar.names
importance.xvar <- get.importance.xvar(importance.xvar, importance, object)
importance.xvar.idx <- match(importance.xvar, xvar.names)
## verify key options
na.action <- match.arg(na.action, c("na.omit", "na.impute"))
outcome <- match.arg(outcome, c("train", "test"))
proximity <- match.arg(as.character(proximity), c(FALSE, TRUE, "inbag", "oob", "all"))
forest.wt <- match.arg(as.character(forest.wt), c(FALSE, TRUE, "inbag", "oob", "all"))
distance <- match.arg(as.character(distance), c(FALSE, TRUE, "inbag", "oob", "all"))
var.used <- match.arg(as.character(var.used), c("FALSE", "all.trees", "by.tree"))
if (var.used == "FALSE") var.used <- FALSE
split.depth <- match.arg(as.character(split.depth), c("FALSE", "all.trees", "by.tree"))
if (split.depth == "FALSE") split.depth <- FALSE
## initialize the seed
seed <- get.seed(seed)
## set restore.mode and the ensemble option
## - if newdata is missing we assume restore.mode
## - outcome = "test" is treated as restore.mode = FALSE for R-processing
## but is then switched to restore.mode = TRUE for the native .Call
if (missing(newdata)) {
restore.mode <- TRUE
outcome <- "train"
if (is.null(ensemble)) {
## default action assigns the grow forest ensemble option
if (!is.null(object$ensemble)) {
ensemble <- object$ensemble
} else {
## backwards compatibility with prior versions
ensemble <- "all"
}
} else {
ensemble <- match.arg(ensemble, c("oob", "inbag", "all"))
}
} else {##there is test data present
restore.mode <- FALSE
## special treatment for outcome == "test" (which is really restore mode)
if (outcome == "test") {
if (is.null(ensemble)) {
## default action is to provide all ensembles
ensemble <- "all"
} else {
ensemble <- match.arg(ensemble, c("oob", "inbag", "all"))
}
} else {
## standard prediction scenario on new test data - there is no OOB
ensemble <- "inbag"
}
}
## REDUCES THE OBJECT TO THE FOREST -- REDUCTION STARTS HERE
## hereafter we only need the forest and reassign "object" to the forest
## (TBD, TBD, TBD) memory management "big.data" not currently implemented: (TBD, TBD, TBD)
# if (sum(inherits(object, c("rfsrc", "grow"), TRUE) == c(1, 2)) == 2) {
if (inherits(object, "bigdata")) {
big.data <- TRUE
}
else {
big.data <- FALSE
}
object <- object$forest
# } else {
# ## object is already a forest
# if (inherits(object, "bigdata")) {
# big.data <- TRUE
# }
# else {
# big.data <- FALSE
# }
# }
## confirm version coherence
# if (is.null(object$version)) {
# cat("\n This function only works with objects created with the following minimum version of the package:")
# cat("\n Minimum version: ")
# cat("2.3.0")
# cat("\n Your version: ")
# cat("unknown")
# cat("\n")
# stop()
# } else {
# object.version <- as.integer(unlist(strsplit(object$version, "[.]")))
# installed.version <- as.integer(unlist(strsplit("2.9.3", "[.]")))
# minimum.version <- as.integer(unlist(strsplit("2.3.0", "[.]")))
# object.version.adj <- object.version[1] + (object.version[2]/10) + (object.version[3]/100)
# installed.version.adj <- installed.version[1] + (installed.version[2]/10) + (installed.version[3]/100)
# minimum.version.adj <- minimum.version[1] + (minimum.version[2]/10) + (minimum.version[3]/100)
# ## Minimum object version must be satisfied for us to proceed. This is the only way
# ## terminal node restoration is guaranteed, due to RNG coherency.
# if (object.version.adj >= minimum.version.adj) {
# ## We are okay
# }
# else {
# cat("\n This function only works with objects created with the following minimum version of the package:")
# cat("\n Minimum version: ")
# cat("2.3.0")
# cat("\n Your version: ")
# cat(object$version)
# cat("\n")
# stop()
# }
# }
## classification specific details related to rfq and perf.type
pi.hat <- NULL
if (family == "class") {
## rfq specific details
if (!is.null(rfq)) {##predict has specified rfq
if (!rfq) {##predict does not want rfq
## nothing
}
else {##predict has requested rfq
pi.hat <- table(object$yvar) / length(object$yvar)
}
}
if (is.null(rfq)) {##predict ambivalent about rfq
if (!object$rfq) {##grow did not use rfq
## nothing -> rfq = FALSE
}
else {##grow used rfq - use grow spec
pi.hat <- table(object$yvar) / length(object$yvar)
rfq <- TRUE
}
}
## performance details
if (is.null(perf.type) && !is.null(object$perf.type)) {
perf.type <- object$perf.type
}
}
## recover the split rule
splitrule <- object$splitrule
## gk processing
if (!is.null(gk.quantile) || object$gk.quantile) {
if (is.null(gk.quantile)) {##predict ambivalent about gk - use grow spec
gk.quantile <- object$gk.quantile
}
}
## !!! here's where prob and prob.epsilon are set globally !!!
gk.quantile <- get.gk.quantile(gk.quantile)
prob.assign <- global.prob.assign(if (is.null(prob)) object$prob else prob,
if (is.null(prob.epsilon)) object$prob.epsilon else prob.epsilon,
gk.quantile, object$quantile.regr, splitrule, nrow(object$xvar))
## Determine the immutable yvar factor map which is needed for
## classification sexp dimensioning. But, first convert object$yvar
## to a data frame which is required for factor processing
object$yvar <- as.data.frame(object$yvar)
colnames(object$yvar) <- yvar.names
yfactor <- extract.factor(object$yvar)
## multivariate family details
m.target.idx <- get.outcome.target(family, yvar.names, m.target)
## get the y-outcome type and number of levels
yvar.types <- get.yvar.type(family, yfactor$generic.types, yvar.names)
yvar.nlevels <- get.yvar.nlevels(family, yfactor$nlevels, yvar.names, object$yvar)
## get event information for survival families
event.info <- get.event.info(object)
## CR.bits assignment
cr.bits <- get.cr.bits(family)
## determine the immutable xvar factor map
xfactor <- extract.factor(object$xvar)
any.xvar.factor <- (length(xfactor$factor) + length(xfactor$order)) > 0
## get the x-variable type and number of levels
xvar.types <- get.xvar.type(xfactor$generic.types, xvar.names)
xvar.nlevels <- get.xvar.nlevels(xfactor$nlevels, xvar.names, object$xvar)
## set flags appropriately for unsupervised forests
## there are layers of checks appearing later, so some of these are redundant
if (family == "unsupv") {
outcome <- "train"
perf.type <- "none"
importance <- "none"
}
## Override ptn.count by family. Pruning is based on variance,
## thus, this is not yet well-defined in [S] settings.
if (grepl("surv", family)) {
ptn.count <- 0
}
## ----------------------------------------------------------------
## From the native code's perspective, PRED mode can process one
## or two data sets. If one data set is sent in, we assume
## we wish to restore the forest with original-training or
## pseudo-training data. If two data sets are sent in, we
## assume we are sending in the original-training data set, and a
## test data set. When outcome="test" we make a call to the native
## code with only one data set (the test data which becomes pseudo-training
## data). We set the test outcome bit to allow the native
## code to distinguish this case from the case of the restore
## with the original training data.
## ----------------------------------------------------------------
##--------------------------------------------------------
## NON-RESTORE MODE PROCESSING (includes outcome=="test")
##--------------------------------------------------------
if (!restore.mode) {
## Filter the test data based on the formula
newdata <- newdata[, is.element(names(newdata),
c(yvar.names, xvar.names)), drop = FALSE]
## Check that test/train factors are the same. If factor has an
## NA in its levels, remove it. Confirm factor labels overlap.
newdata <- rm.na.levels(newdata, xvar.names)
newdata.xfactor <- extract.factor(newdata, xvar.names)
if (!setequal(xfactor$factor, newdata.xfactor$factor)) {
stop("x-variable factors from test data do not match original training data")
}
if (!setequal(xfactor$order, newdata.xfactor$order)) {
stop("(ordered) x-variable factors from test data do not match original training data")
}
any.outcome.factor <- family == "class"
if (family == "class+" | family == "mix+") {
if (length(intersect("R", yfactor$generic.types[m.target.idx])) == 0) {
any.outcome.factor <- TRUE
}
}
## If the outcomes contain factors we need to check that train/test y-outcomes are compatible
if (any.outcome.factor) {
if (sum(is.element(names(newdata), yvar.names)) > 0) {
newdata <- rm.na.levels(newdata, yvar.names)
newdata.yfactor <- extract.factor(newdata, yvar.names)
if (!setequal(yfactor$factor, newdata.yfactor$factor)) {
stop("class outcome from test data does not match original training data")
}
if (!setequal(yfactor$order, newdata.yfactor$order)) {
stop("(ordered) class outcome from test data does not match original training data")
}
}
}
## One final (possibly redundant) check confirming coherence of train/test xvars
if (length(xvar.names) != sum(is.element(xvar.names, names(newdata)))) {
stop("x-variables in test data do not match original training data")
}
## One final check confirming coherence of train/test yvars (assuming test yvars are available)
yvar.present <- sum(is.element(yvar.names, names(newdata))) > 0
if (yvar.present && length(yvar.names) != sum(is.element(yvar.names, names(newdata)))) {
stop("y-variables in test data do not match original training data")
}
## Force test factor levels to equal grow factor levels
## this is crucial to ensuring an immutable map
if (any.xvar.factor) {
newdata <- check.factor(object$xvar, newdata, xfactor)
}
## If the outcomes contain factors we need to check factor coherence.
if (any.outcome.factor) {
if (yvar.present) {
newdata <- check.factor(object$yvar, newdata, yfactor)
}
}
## Extract test yvar names (if any) and xvar names.
if (yvar.present) {
fnames <- c(yvar.names, xvar.names)
} else {
fnames <- xvar.names
}
## Data conversion to numeric mode
newdata <- finalizeData(fnames, newdata, na.action)
## Extract the test x-matrix and sort the columns as in the original training data.
## this accomodates incoming test x-matrix in a different order.
xvar.newdata <- as.matrix(newdata[, xvar.names, drop = FALSE])
n.newdata <- nrow(newdata)
## Save the row names for later overlay
newdata.row.names <- rownames(xvar.newdata)
## Process the y-outcomes and set their dimension
## note that in unsupervised mode there are no responses
## r.dim.newdata is set correctly by get.grow.event.info() in this case
if (yvar.present) {
yvar.newdata <- as.matrix(newdata[, yvar.names, drop = FALSE])
event.info.newdata <- get.grow.event.info(yvar.newdata, family, need.deaths = FALSE)
r.dim.newdata <- event.info.newdata$r.dim
## Survival specific coherency checks
## if there are no deaths, turn off performance values and VIMP
if (grepl("surv", family) && all(na.omit(event.info.newdata$cens) == 0)) {
perf.type <- "none"
importance <- "none"
}
## Ensure consistency of event types
if (grepl("surv", family) &&
length(setdiff(na.omit(event.info.newdata$cens), na.omit(event.info$cens))) > 1) {
stop("survival events in test data do not match training data")
}
} else {
## Disallow outcome=TEST without y-outcomes
if (outcome == "test") {
stop("outcome=TEST, but the test data has no y values, which is not permitted")
}
## There are no outcomes.
r.dim.newdata <- 0
yvar.newdata <- NULL
perf.type <- "none"
importance <- "none"
}
## Remove xvar row and column names for proper processing by the native library
## does not apply when outcome = TEST because the xvar TEST data has been made NULL
if (outcome != "test") {
rownames(xvar.newdata) <- colnames(xvar.newdata) <- NULL
}
## We don't need the test data anymore
remove(newdata)
}
##--------------------------------------------------------
## RESTORE MODE PROCESSING (excludes outcome=="test")
##--------------------------------------------------------
else {
## There cannot be test data in restore mode
## The native code switches based on n.newdata being zero (0). Be careful.
n.newdata <- 0
r.dim.newdata <- 0
xvar.newdata <- NULL
yvar.newdata <- NULL
## Outcome is set to train for the native code
## Determine whether performance values are requested
outcome <- "train"
if (object$bootstrap == "none" || object$bootstrap == "by.node" || family == "unsupv") {
importance <- "none"
perf.type <- "none"
}
else {
## do nothing.
}
} ## ends restore.mode check
## ------------------------------------------------------------
## We have completed the restore/non-restore mode processing
## ------------------------------------------------------------
## Final processing of xvar and yvar test data
## depends on "outcome"
## outcome=train
if (outcome == "train") {
## data conversion for training data
xvar <- as.matrix(data.matrix(object$xvar))
yvar <- as.matrix(data.matrix(object$yvar))
## Respect the training options related to bootstrapping:
sampsize <- round(object$sampsize(nrow(xvar)))
case.wt <- object$case.wt
samp <- object$samp
} else {
## outcome=test
## From the native code perspective we are in pseudo-restore mode
## From the R side, it is convenient to now pretend we are
## in restore mode, so we swap the training data out with the test data
## Performance is always requested for this setting
## swap the data
xvar <- xvar.newdata
yvar <- yvar.newdata
restore.mode <- TRUE
## pretend there is no test data, but do *not* get rid of it
## we need (and use) this data *after* the native code call
n.newdata <- 0
r.dim.newdata <- 0
## set the sample size
## "swor" now handled because we now make sampsize a function of n
sampsize <- round(object$sampsize(nrow(xvar)))
case.wt <- get.weight(NULL, nrow(xvar))
samp <- NULL
}
## Set the y dimension
r.dim <- ncol(cbind(yvar))
## remove row and column names for proper processing by the native library
## set the dimensions
rownames(xvar) <- colnames(xvar) <- NULL
n.xvar <- ncol(xvar)
n <- nrow(xvar)
## initialize the number of trees in the forest
ntree <- object$ntree
## process the get.tree vector that specifies which trees we want
## to extract from the forest. This is only relevant to restore mode.
## The parameter is ignored in predict mode.
get.tree <- get.tree.index(get.tree, ntree)
## initialize the low bits
ensemble.bits <- get.ensemble(ensemble)
importance.bits <- get.importance(importance)
proximity.bits <- get.proximity(restore.mode, proximity)
distance.bits <- get.distance(restore.mode, distance)
split.depth.bits <- get.split.depth(split.depth)
var.used.bits <- get.var.used(var.used)
outcome.bits <- get.outcome(outcome)
## get performance and rfq, gk bits
perf.type <- get.perf(perf.type, FALSE, family)
perf.bits <- get.perf.bits(perf.type)
rfq <- get.rfq(rfq)
rfq.bits <- get.rfq.bits(rfq, family)
gk.quantile.bits <- get.gk.quantile.bits(gk.quantile)
statistics.bits <- get.statistics(statistics)
bootstrap.bits <- get.bootstrap(object$bootstrap)
## Initalize the high bits
samptype.bits <- get.samptype(object$samptype)
## forest weights
forest.wt.bits <- get.forest.wt(restore.mode, object$bootstrap, forest.wt)
membership.bits <- get.membership(membership)
terminal.qualts.bits <- get.terminal.qualts(terminal.qualts, object$terminal.qualts)
terminal.quants.bits <- get.terminal.quants(terminal.quants, object$terminal.quants)
## We over-ride block-size in the case that get.tree is user specified
block.size <- min(get.block.size(block.size, ntree), sum(get.tree))
## Turn off partial option.
partial.bits <- 0 # get.partial(0)
## na.action in the native code is only revelant to the training data.
## Unless outcome == "test", we send in the protocol used for the training data.
if (outcome == "test") {
## respect the user defined protocol
} else {
## Use the training data protocol
na.action = object$na.action
}
na.action.bits <- get.na.action(na.action)
## Process the subsetted index
if (missing(subset) | is.null(subset)) {
subset <- NULL
} else {
## Convert the user specified subset into a usable form
if (is.logical(subset)) {
subset <- which(subset)
}
subset <- unique(subset[subset >= 1 & subset <= n])
if (length(subset) == 0) {
stop("'subset' not set properly")
}
}
## Check that hdim is initialized. If not, set it zero.
## This is necessary for backwards compatibility with 2.3.0
if (is.null(object$hdim)) {
hdim <- 0
}
else {
hdim <- object$hdim
}
do.trace <- get.trace(do.trace)
## Marker for start of native forest topology. This can change
## with the outputs requested. For the arithmetic related to the
## pivot point, refer to rfsrc.R, in the POST PROCESSING section,
## after $nativeArray has been defined. This is the structure
## that is parsed below. Prior code in rfsrc.R is parsing the
## native code output from the grow call and is irrelevant here.
## WARNING: Note that the maximum number of slots in the following
## foreign function call is 64. Ensure that this limit is not
## exceeded. Otherwise, the program will error on the call.
if (hdim == 0) {
offset = 0
chunk = 0
} else {
## Offset starts at parmID2. We adjust for the presence of interactions.
offset = 7
## A chunk is parmID2, contPT2, contPTR2, mwcpSZ2.
chunk = 4
if (!is.null(object$base.learner)) {
if (object$base.learner$trial.depth > 1) {
## Offset with interactions is adjusted.
## Adjusted for AUGM_X1, AUGM_X2.
offset = 9
## A chunk is parmID2, contPT2, contPTR2, mwcpSZ2, augmXone2, augmXtwo2.
chunk = 6
}
}
}
nativeOutput <- tryCatch({.Call("rfsrcPredict",
as.integer(do.trace),
as.integer(seed),
as.integer(ensemble.bits +
importance.bits +
bootstrap.bits +
proximity.bits +
split.depth.bits +
var.used.bits +
outcome.bits +
perf.bits +
rfq.bits +
cr.bits +
gk.quantile.bits +
statistics.bits),
as.integer(forest.wt.bits +
distance.bits +
samptype.bits +
na.action.bits +
membership.bits +
terminal.qualts.bits +
terminal.quants.bits),
## >>>> start of maxi forest object >>>>
as.integer(ntree),
as.integer(n),
as.integer(r.dim),
as.character(yvar.types),
as.integer(yvar.nlevels),
as.double(as.vector(yvar)),
as.integer(ncol(xvar)),
as.character(xvar.types),
as.integer(xvar.nlevels),
as.double(xvar),
as.integer(sampsize),
as.integer(samp),
as.double(case.wt),
list(if(is.null(event.info$time.interest)) as.integer(0) else as.integer(length(event.info$time.interest)),
if(is.null(event.info$time.interest)) NULL else as.double(event.info$time.interest)),
as.integer(object$totalNodeCount),
as.integer(object$seed),
as.integer(hdim),
## Object containing base learner settings, this is never NULL.
object$base.learner,
as.integer((object$nativeArray)$treeID),
as.integer((object$nativeArray)$nodeID),
## This is hc_zero. It is never NULL.
list(as.integer((object$nativeArray)$parmID),
as.double((object$nativeArray)$contPT),
as.integer((object$nativeArray)$mwcpSZ),
as.integer((object$nativeFactorArray)$mwcpPT)),
## This slot is hc_zero_aug. This slot can be NULL.
if (!is.null(object$base.learner)) {
if (object$base.learner$trial.depth > 1) {
list(as.integer((object$nativeArray)$augmXone),
as.integer((object$nativeArray)$augmXtwo))
} else { NULL }
} else { NULL },
## This slot is hc_one. This slot can be NULL.
if (hdim > 0) {
list(as.integer((object$nativeArray)$hcDim),
as.double((object$nativeArray)$contPTR))
} else { NULL },
## See the offset documentation in
## rfsrc.R after the nativeArray
## SEXP objects are populated in the
## post-forest parsing for an
## explanation of the offsets below.
if (hdim > 1) {
## parmIDx
lapply(0:(hdim-2), function(x) {as.integer(object$nativeArray[, offset + 1 + (chunk * x)])})
} else { NULL },
if (hdim > 1) {
## contPTx
lapply(0:(hdim-2), function(x) {as.double(object$nativeArray[ , offset + 2 + (chunk * x)])})
} else { NULL },
if (hdim > 1) {
## contPTRx
lapply(0:(hdim-2), function(x) {as.double(object$nativeArray[ , offset + 3 + (chunk * x)])})
} else { NULL },
if (hdim > 1) {
## mwcpSZx
lapply(0:(hdim-2), function(x) {as.integer(object$nativeArray[, offset + 4 + (chunk * x)])})
} else { NULL },
if (hdim > 1) {
## mwcpPTx
lapply(0:(hdim-2), function(x) {as.integer(object$nativeFactorArray[[x + 1]])})
} else { NULL },
if (hdim > 1) {
if (!is.null(object$base.learner)) {
if (object$base.learner$trial.depth > 1) {
## augmXonex
lapply(0:(hdim-2), function(x) {as.integer(object$nativeArray[ , offset + 5 + (chunk * x)])})
} else { NULL }
} else { NULL }
} else { NULL },
if (hdim > 1) {
if (!is.null(object$base.learner)) {
if (object$base.learner$trial.depth > 1) {
## augmXtwox
lapply(0:(hdim-2), function(x) {as.integer(object$nativeArray[ , offset + 6 + (chunk * x)])})
} else { NULL }
} else { NULL }
} else { NULL },
as.integer(object$nativeArrayTNDS$tnRMBR),
as.integer(object$nativeArrayTNDS$tnAMBR),
as.integer(object$nativeArrayTNDS$tnRCNT),
as.integer(object$nativeArrayTNDS$tnACNT),
as.double((object$nativeArrayTNDS$tnSURV)),
as.double((object$nativeArrayTNDS$tnMORT)),
as.double((object$nativeArrayTNDS$tnNLSN)),
as.double((object$nativeArrayTNDS$tnCSHZ)),
as.double((object$nativeArrayTNDS$tnCIFN)),
as.double((object$nativeArrayTNDS$tnREGR)),
as.integer((object$nativeArrayTNDS$tnCLAS)),
## <<<< end of maxi forest object <<<<
list(if (is.null(m.target.idx)) as.integer(0) else as.integer(length(m.target.idx)),
if (is.null(m.target.idx)) NULL else as.integer(m.target.idx)),
as.integer(ptn.count),
list(if (is.null(importance.xvar.idx)) as.integer(0) else as.integer(length(importance.xvar.idx)),
if (is.null(importance.xvar.idx)) NULL else as.integer(importance.xvar.idx)),
## Partial variables disabled.
list(as.integer(0), as.integer(0), as.integer(0), NULL, as.integer(0), NULL, NULL),
as.integer(length(subset)),
as.integer(subset),
as.integer(n.newdata),
as.integer(r.dim.newdata),
as.double(if (outcome != "test") yvar.newdata else NULL),
as.double(if (outcome != "test") xvar.newdata else NULL),
as.integer(block.size),
list(if (is.null(prob.assign$prob)) as.integer(0) else as.integer(length(prob.assign$prob)),
if (is.null(prob.assign$prob)) NULL else as.double(prob.assign$prob),
if (is.null(prob.assign$prob.epsilon)) as.double(0) else as.double(prob.assign$prob.epsilon)),
as.integer(get.tree),
as.integer(get.rf.cores()))}, error = function(e) {
print(e)
NULL})
## check for error return condition in the native code
if (is.null(nativeOutput)) {
stop("An error has occurred in prediction. Please turn trace on for further analysis.")
}
## determine missingness according to mode (REST vs. PRED)
if (restore.mode) {
n.miss <- get.nmiss(xvar, yvar)
}
else {
n.miss <- get.nmiss(xvar.newdata, yvar.newdata)
}
## extract the imputed data if there was missingness
if (n.miss > 0) {
imputed.data <- matrix(nativeOutput$imputation, nrow = n.miss)
nativeOutput$imputation <- NULL
imputed.indv <- imputed.data[, 1]
imputed.data <- as.data.frame(imputed.data[, -1, drop = FALSE])
if ((r.dim.newdata > 0) | (perf.type != "none")) {
colnames(imputed.data) <- c(yvar.names, xvar.names)
}
else {
colnames(imputed.data) <- xvar.names
}
}
## post-process the test data
## for restore mode there is no test data *except* when outcome=TEST
if (!restore.mode | outcome == "test") {
## add row and column names to test xvar matrix
xvar.newdata <- as.data.frame(xvar.newdata)
rownames(xvar.newdata) <- newdata.row.names
colnames(xvar.newdata) <- xvar.names
## map xvar factors back to original values
xvar.newdata <- map.factor(xvar.newdata, xfactor)
if (perf.type != "none") {
## add column names to test response matrix
yvar.newdata <- as.data.frame(yvar.newdata)
colnames(yvar.newdata) <- yvar.names
## map response factors back to original values
yvar.newdata <- map.factor(yvar.newdata, yfactor)
}
}
## Map imputed data factors back to original values
if (n.miss > 0) {
imputed.data <- map.factor(imputed.data, xfactor)
if (perf.type != "none") {
imputed.data <- map.factor(imputed.data, yfactor)
}
}
## proximity
if (proximity != FALSE) {
if (restore.mode) {
prox.n <- n
}
else {
prox.n <- n.newdata
}
proximity.out <- matrix(0, prox.n, prox.n)
count <- 0
for (k in 1:prox.n) {
proximity.out[k,1:k] <- nativeOutput$proximity[(count+1):(count+k)]
proximity.out[1:k,k] <- proximity.out[k,1:k]
count <- count + k
}
nativeOutput$proximity <- NULL
}
else {
proximity.out <- NULL
}
## distance
if (distance != FALSE) {
if (restore.mode) {
dist.n <- n
}
else {
dist.n <- n.newdata
}
distance.out <- matrix(0, dist.n, dist.n)
count <- 0
for (k in 1:dist.n) {
distance.out[k,1:k] <- nativeOutput$distance[(count+1):(count+k)]
distance.out[1:k,k] <- distance.out[k,1:k]
count <- count + k
}
nativeOutput$distance <- NULL
}
else {
distance.out <- NULL
}
## forest weight matrix
if (forest.wt != FALSE) {
if (restore.mode) {
forest.wt.n <- c(n, n)
}
else {
forest.wt.n <- c(n.newdata, n)
}
forest.wt.out <- matrix(nativeOutput$weight, forest.wt.n, byrow = TRUE)
nativeOutput$weight <- NULL
}
else {
forest.wt.out <- NULL
}
n.observed = if (restore.mode) n else n.newdata
## membership
if (membership) {
membership.out <- matrix(nativeOutput$nodeMembership, c(n.observed, ntree))
nativeOutput$nodeMembership <- NULL
if (restore.mode) {
inbag.out <- matrix(nativeOutput$bootMembership, c(n.observed, ntree))
nativeOutput$bootMembership <- NULL
}
else {
inbag.out <- NULL
}
if (ptn.count > 0) {
ptn.membership.out <- matrix(nativeOutput$pstnMembership, c(n.observed, ntree))
nativeOutput$pstnMembership <- NULL
}
else {
ptn.membership.out <- NULL
}
}
else {
membership.out <- NULL
inbag.out <- NULL
ptn.membership.out <- NULL
}
## variables used
if (var.used != FALSE) {
if (var.used == "all.trees") {
var.used.out <- nativeOutput$varUsed
names(var.used.out) <- xvar.names
}
else {
var.used.out <- matrix(nativeOutput$varUsed, nrow = ntree, byrow = TRUE)
colnames(var.used.out) <- xvar.names
}
nativeOutput$varUsed <- NULL
}
else {
var.used.out <- NULL
}
## split depth
if (split.depth != FALSE) {
if (split.depth == "all.trees") {
split.depth.out <- array(nativeOutput$splitDepth, c(n, n.xvar))
}
else {
split.depth.out <- array(nativeOutput$splitDepth, c(n, n.xvar, ntree))
}
nativeOutput$splitDepth <- NULL
}
else {
split.depth.out <- NULL
}
## node statistics
if (statistics == TRUE) {
node.stats <- as.data.frame(cbind(nativeOutput$spltST))
names(node.stats) <- c("spltST")
}
else {
node.stats <- NULL
}
## make the output object
rfsrcOutput <- list(
call = match.call(),
family = family,
n = n.observed,
ntree = ntree,
yvar = (if ((outcome == "train" & restore.mode) | (perf.type != "none")) {
if (outcome == "train" & restore.mode)
amatrix.remove.names(object$yvar) else amatrix.remove.names(yvar.newdata)} else NULL),
yvar.names = yvar.names,
xvar = (if(outcome != "test" & restore.mode) object$xvar else xvar.newdata),
xvar.names = xvar.names,
leaf.count = nativeOutput$leafCount,
proximity = proximity.out,
forest = object,
forest.wt = forest.wt.out,
distance = distance.out,
ptn.membership = ptn.membership.out,
membership = membership.out,
splitrule = splitrule,
inbag = inbag.out,
var.used = var.used.out,
imputed.indv = (if (n.miss>0) imputed.indv else NULL),
imputed.data = (if (n.miss>0) imputed.data else NULL),
split.depth = split.depth.out,
node.stats = node.stats,
block.size = block.size,
perf.type = perf.type
)
## memory management
nativeOutput$leafCount <- NULL
remove(object)
remove(proximity.out)
remove(forest.wt.out)
remove(distance.out)
remove(ptn.membership.out)
remove(membership.out)
remove(inbag.out)
if (n.miss > 0) remove(imputed.indv)
if (n.miss > 0) remove(imputed.data)
remove(var.used.out)
remove(split.depth.out)
remove(node.stats)
## Safe the outputs.
survOutput <- NULL
classOutput <- NULL
regrOutput <- NULL
if(vimp.joint) {
vimp.count <- 1
}
else {
vimp.count <- length(importance.xvar)
}
## family specific additions to the predict object
if (grepl("surv", family)) {
if ((length(event.info$event.type) > 1) &&
(splitrule != "l2.impute") &&
(splitrule != "logrankscore")) {
coerced.event.count <- length(event.info$event.type)
}
else {
coerced.event.count <- 1
}
if (family == "surv") {
## Right Censored names.
ens.names <- list(NULL, NULL)
mortality.names <- list(NULL, NULL)
err.names <- list(NULL, NULL)
vimp.names <- list(NULL, if (vimp.joint) "joint" else importance.xvar)
}
else {
## Competing Risk names.
ens.names <- list(NULL, NULL, c(paste("condCHF.", 1:length(event.info$event.type), sep = "")))
mortality.names <- list(NULL, paste("event.", 1:length(event.info$event.type), sep = ""))
cif.names <- list(NULL, NULL, c(paste("CIF.", 1:length(event.info$event.type), sep = "")))
err.names <- list(c(paste("event.", 1:length(event.info$event.type), sep = "")), NULL)
vimp.names <- list(paste("event.", 1:length(event.info$event.type), sep = ""),
if(vimp.joint) "joint" else importance.xvar)
}
## From the native code:
## "allEnsbCHF"
## "oobEnsbCHF"
## -> of dim [length(event.info$event.type)] x [RF_sortedTimeInterestSize] x [n]
## where [length(event.info$event.type)] may be equal to [1].
## To the R code:
## -> of dim [n] x [RF_sortedTimeInterestSize] x [length(event.info$event.type)]
chf <- (if (!is.null(nativeOutput$allEnsbCHF))
adrop3d.last(array(nativeOutput$allEnsbCHF,
c(n.observed, length(event.info$time.interest), length(event.info$event.type)),
dimnames=ens.names), length(event.info$event.type)) else NULL)
nativeOutput$allEnsbCHF <- NULL
survOutput <- list(chf = chf)
remove(chf)
chf.oob <- (if (!is.null(nativeOutput$oobEnsbCHF))
adrop3d.last(array(nativeOutput$oobEnsbCHF,
c(n.observed, length(event.info$time.interest), length(event.info$event.type)),
dimnames=ens.names), length(event.info$event.type)) else NULL)
nativeOutput$oobEnsbCHF <- NULL
survOutput = c(survOutput, chf.oob = list(chf.oob))
remove(chf.oob)
## From the native code:
## "allEnsbMRT"
## "oobEnsbMRT"
## -> of dim [length(event.info$event.type)] x [n]
## To the R code:
## -> of dim [n] x [length(event.info$event.type)]
predicted <- (if (!is.null(nativeOutput$allEnsbMRT))
adrop2d.last(array(nativeOutput$allEnsbMRT,
c(n.observed, length(event.info$event.type)), dimnames=mortality.names), coerced.event.count) else NULL)
nativeOutput$allEnsbMRT <- NULL
survOutput = c(survOutput, predicted = list(predicted))
remove(predicted)
predicted.oob <- (if (!is.null(nativeOutput$oobEnsbMRT))
adrop2d.last(array(nativeOutput$oobEnsbMRT,
c(n.observed, length(event.info$event.type)), dimnames=mortality.names), coerced.event.count) else NULL)
nativeOutput$oobEnsbMRT <- NULL
survOutput <- c(survOutput, predicted.oob = list(predicted.oob))
remove(predicted.oob)
## From the native code:
## "allEnsbSRV"
## "oobEnsbSRV"
## -> of dim [RF_sortedTimeInterestSize] x [n]
## To the R code:
## -> of dim [n] x [RF_sortedTimeInterestSize]
survival <- (if (!is.null(nativeOutput$allEnsbSRV))
matrix(nativeOutput$allEnsbSRV,
c(n.observed, length(event.info$time.interest))) else NULL)
nativeOutput$allEnsbSRV <- NULL
survOutput <- c(survOutput, survival = list(survival))
remove(survival)
survival.oob <- (if (!is.null(nativeOutput$oobEnsbSRV))
matrix(nativeOutput$oobEnsbSRV,
c(n.observed, length(event.info$time.interest))) else NULL)
nativeOutput$oobEnsbSRV <- NULL
survOutput <- c(survOutput, survival.oob = list(survival.oob))
remove(survival.oob)
## From the native code:
## "allEnsbCIF"
## "oobEnsbCIF"
## -> of dim [length(event.info$event.type)] x [RF_sortedTimeInterestSize] x [n]
## To the native code:
## -> of dim [n] x [RF_sortedTimeInterestSize] x [length(event.info$event.type)]
cif <- (if (!is.null(nativeOutput$allEnsbCIF))
array(nativeOutput$allEnsbCIF,
c(n.observed, length(event.info$time.interest), length(event.info$event.type)),
dimnames=cif.names) else NULL)
nativeOutput$allEnsbCIF <- NULL
survOutput <- c(survOutput, cif = list(cif))
remove(cif)
cif.oob <- (if (!is.null(nativeOutput$oobEnsbCIF))
array(nativeOutput$oobEnsbCIF,
c(n.observed, length(event.info$time.interest), length(event.info$event.type)),
dimnames=cif.names) else NULL)
nativeOutput$oobEnsbCIF <- NULL
survOutput = c(survOutput, cif.oob = list(cif.oob))
remove(cif.oob)
## From the native code:
## "perfSurv"
## -> of dim [ntree] x length(event.info$event.type)]
## To the R code:
## -> of dim [ntree] x length(event.info$event.type)]
if (!is.null(nativeOutput$perfSurv)) {
err.rate <- adrop2d.first(array(nativeOutput$perfSurv,
c(length(event.info$event.type), ntree),
dimnames=err.names),
coerced.event.count)
nativeOutput$perfSurv <- NULL
if (family == "surv-CR") {
survOutput = c(survOutput, err.rate = list(t(err.rate)))
}
else {
survOutput = c(survOutput, err.rate = list(err.rate))
}
remove(err.rate)
}
## From the native code:
## "blockSurv"
## -> of dim [block.cnt] x length(event.info$event.type)]
## To the R code:
## -> of dim [block.cnt] x length(event.info$event.type)]
if (!is.null(nativeOutput$blockSurv)) {
err.block.rate <- adrop2d.first(array(nativeOutput$blockSurv,
c(length(event.info$event.type), floor(ntree/block.size)),
dimnames=err.names),
coerced.event.count)
nativeOutput$blockSurv <- NULL
if (family == "surv-CR") {
survOutput = c(survOutput, err.block.rate = list(t(err.block.rate)))
}
else {
survOutput = c(survOutput, err.block.rate = list(err.block.rate))
}
remove(err.block.rate)
}
## From the native code:
## "vimpSurv"
## -> of dim [n.xvar] x length(event.info$event.type)]
## To the R code:
## -> of dim length(event.info$event.type)] x [n.xvar]
if (!is.null(nativeOutput$vimpSurv)) {
importance <- adrop2d.first(array(nativeOutput$vimpSurv,
c(length(event.info$event.type), vimp.count),
dimnames = vimp.names),
coerced.event.count)
nativeOutput$vimpSurv <- NULL
if (family == "surv-CR") {
survOutput = c(survOutput, importance = list(t(importance)))
}
else {
survOutput = c(survOutput, importance = list(importance))
}
remove(importance)
}
survOutput = c(
survOutput, list(
time.interest = event.info$time.interest,
ndead = (if (perf.type != "none") sum((if (restore.mode) yvar[, 2] else yvar.newdata[, 2]) !=0 , na.rm=TRUE) else NULL))
)
## When TRUE we revert to univariate nomenclature for all the outputs.
if(univariate.nomenclature) {
rfsrcOutput <- c(rfsrcOutput, survOutput)
}
else {
rfsrcOutput <- c(rfsrcOutput, survOutput = list(survOutput))
}
}
else {
## We consider "R", "I", and "C" outcomes. The outcomes are grouped
## by type and sequential. That is, the first "C" encountered in the
## response type vector is in position [[1]] in the classification output
## list, the second "C" encountered is in position [[2]] in the
## classification output list, and so on. The same applies to the
## regression outputs. We also have a mapping from the outcome slot back
## to the original response vector type, given by the following:
## Given yvar.types = c("R", "C", "R", "C", "R" , "I")
## regr.index[1] -> 1
## regr.index[2] -> 3
## regr.index[3] -> 5
## clas.index[1] -> 2
## clas.index[2] -> 4
## clas.index[3] -> 6
## This will pick up all "C" and "I".
class.index <- which(yvar.types != "R")
class.count <- length(class.index)
regr.index <- which(yvar.types == "R")
regr.count <- length(regr.index)
if (class.count > 0) {
classOutput <- vector("list", class.count)
## Names of the classification outputs.
names(classOutput) <- yvar.names[class.index]
## Vector to hold the number of levels in each factor response.
levels.count <- array(0, class.count)
## List to hold the names of levels in each factor response.
levels.names <- vector("list", class.count)
counter <- 0
for (i in class.index) {
counter <- counter + 1
## Note that [i] is the actual index of the y-variables and not a sequential iterator.
## The sequential iteratior is [counter]
levels.count[counter] <- yvar.nlevels[i]
if (yvar.types[i] == "C") {
## This an unordered factor.
## Here, we don't know the sequence of the unordered factor list, so we identify the factor by name.
levels.names[[counter]] <- yfactor$levels[[which(yfactor$factor == yvar.names[i])]]
}
else {
## This in an ordered factor.
## Here, we don't know the sequence of the ordered factor list, so we identify the factor by name.
levels.names[[counter]] <- yfactor$order.levels[[which(yfactor$order == yvar.names[i])]]
}
}
## Incoming error rates: T=tree R=response L=level
## T1R1L0 T1R1L1 T1R1L2 T1R1L3 T1R2L0 T1R2L1 T1R2L2, T2R1L0 T2R1L1 T2R1L2 T2R1L3 T2R2L0 T2R2L1 T2R2L2, ...
## In GROW mode, all class objects are represented in the tree offset calculation.
## In PRED mode, the offsets are dependent on the only those targets that are requested!
## Yeilds tree.offset = c(1, 8, ...)
tree.offset <- array(1, ntree)
## Sum of all level counts targetted classification. For example,
## if R1 has 3 levels, and R2 has 2 levels, and R3 has 6 levels, and
## only R1 and R3 and targetted, then levels.total = 9 + 3
levels.total <- 0
if (ntree > 1) {
## Iterate over all the target outcomes and map them to the class list.
for (i in 1:length(m.target.idx)) {
## This is the slot in the class list. The class list spans all the classification
## outputs, some of which may be NULL.
target.idx <- which (class.index == m.target.idx[i])
## Is the target a classification y-variable.
if (length(target.idx) > 0) {
levels.total <- levels.total + 1 + levels.count[target.idx]
}
}
tree.offset[2:ntree] <- levels.total
}
tree.offset <- cumsum(tree.offset)
## The block offset calculation mirrors the tree offset calculation, but differs in only the primary dimension.
block.offset <- array(1, floor(ntree/block.size))
if (floor(ntree/block.size) > 1) {
block.offset[2:floor(ntree/block.size)] <- levels.total
}
block.offset <- cumsum(block.offset)
## Incoming vimp rates: V=xvar R=response L=level
## V1R1L0 V1R1L1 V1R1L2 V1R1L3 V1R1L0 V1R2L1 V1R2L2, V2R1L0 V2R1L1 V2R1L2 V2R1L3 V2R2L0 V2R2L1 V2R2L2, ...
## Yeilds vimp.offset = c(1, 8, ...)
vimp.offset <- array(1, vimp.count)
if (vimp.count > 1) {
vimp.offset[2:vimp.count] <- levels.total
}
vimp.offset <- cumsum(vimp.offset)
iter.ensb.start <- 0
iter.ensb.end <- 0
## From the native code:
## "allEnsbCLS"
## "oobEnsbCLS"
## -> of dim [[class.count]] x [levels.count[]] x [n]
## where this is a ragged array.
## From the native code:
## "perfClas"
## -> of dim [ntree] x [class.count] x [1 + levels.count[]]
## where the slot [.] x [.] x [1] holds the unconditional error rate.
## Note that this is a ragged array.
## To the R code:
## -> of dim [[class.count]] x [ntree] x [1 + levels.count[]]
## From the native code:
## "blockClas"
## -> of dim [block.cnt] x [class.count] x [1 + levels.count[]]
## where the slot [.] x [.] x [1] holds the unconditional error rate.
## Note that this is a ragged array.
## To the R code:
## -> of dim [[class.count]] x [block.cnt] x [1 + levels.count[]]
## From the native code:
## "vimpClas"
## -> of dim [n.xvar] x [class.count] x [1 + levels.count]
## where the slot [.] x [.] x [1] holds the unconditional vimp.
## Note that this is a ragged array.
## To the R code:
## -> of dim [[class.count]] x [1 + levels.count] x [n.xvar]
for (i in 1:length(m.target.idx)) {
target.idx <- which (class.index == m.target.idx[i])
if (length(target.idx) > 0) {
iter.ensb.start <- iter.ensb.end
iter.ensb.end <- iter.ensb.end + (levels.count[target.idx] * n.observed)
ens.names <- list(NULL, levels.names[[target.idx]])
err.names <- c("all", levels.names[[target.idx]])
vimp.names <- list(c("all", levels.names[[target.idx]]), if(vimp.joint) "joint" else importance.xvar)
predicted <- (if (!is.null(nativeOutput$allEnsbCLS))
array(nativeOutput$allEnsbCLS[(iter.ensb.start + 1):iter.ensb.end],
c(n.observed, levels.count[target.idx]), dimnames=ens.names) else NULL)
classOutput[[target.idx]] <- list(predicted = predicted)
response <- (if (!is.null(predicted)) getltrc.bayes.rule(predicted, pi.hat) else NULL)
classOutput[[target.idx]] <- c(classOutput[[target.idx]], class = list(response))
remove(predicted)
remove(response)
predicted.oob <- (if (!is.null(nativeOutput$oobEnsbCLS))
array(nativeOutput$oobEnsbCLS[(iter.ensb.start + 1):iter.ensb.end],
c(n.observed, levels.count[target.idx]), dimnames=ens.names) else NULL)
classOutput[[target.idx]] <- c(classOutput[[target.idx]], predicted.oob = list(predicted.oob))
response.oob <- (if (!is.null(predicted.oob)) getltrc.bayes.rule(predicted.oob, pi.hat) else NULL)
classOutput[[target.idx]] <- c(classOutput[[target.idx]], class.oob = list(response.oob))
remove(predicted.oob)
remove(response.oob)
if (!is.null(nativeOutput$perfClas)) {
err.rate <- array(0, c(1 + levels.count[target.idx], ntree))
for (j in 1: (1 + levels.count[target.idx])) {
err.rate[j, ] <- nativeOutput$perfClas[tree.offset]
tree.offset <- tree.offset + 1
}
row.names(err.rate) <- err.names
classOutput[[target.idx]] <- c(classOutput[[target.idx]], err.rate = list(t(err.rate)))
remove(err.rate)
}
if (!is.null(nativeOutput$blockClas)) {
err.block.rate <- array(0, c(1 + levels.count[target.idx], floor(ntree/block.size)))
for (j in 1: (1 + levels.count[target.idx])) {
err.block.rate[j, ] <- nativeOutput$blockClas[block.offset]
block.offset <- block.offset + 1
}
row.names(err.block.rate) <- err.names
classOutput[[target.idx]] <- c(classOutput[[target.idx]], err.block.rate = list(t(err.block.rate)))
remove(err.block.rate)
}
if (!is.null(nativeOutput$vimpClas)) {
importance <- array(0, c(1 + levels.count[target.idx], vimp.count), dimnames=vimp.names)
for (j in 1: (1 + levels.count[target.idx])) {
importance[j, ] <- nativeOutput$vimpClas[vimp.offset]
vimp.offset <- vimp.offset + 1
}
classOutput[[target.idx]] <- c(classOutput[[target.idx]], importance = list(t(importance)))
remove(importance)
}
}
}
nativeOutput$allEnsbCLS <- NULL
nativeOutput$oobEnsbCLS <- NULL
nativeOutput$perfClas <- NULL
nativeOutput$vimpClas <- NULL
nativeOutput$blockClas <- NULL
## When TRUE we revert to univariate nomenclature for all the outputs.
if(univariate.nomenclature) {
if ((class.count == 1) & (regr.count == 0)) {
names(classOutput) <- NULL
rfsrcOutput <- c(rfsrcOutput, unlist(classOutput, recursive=FALSE))
}
else {
rfsrcOutput <- c(rfsrcOutput, classOutput = list(classOutput))
}
}
else {
rfsrcOutput <- c(rfsrcOutput, classOutput = list(classOutput))
}
}
if (regr.count > 0) {
regrOutput <- vector("list", regr.count)
names(regrOutput) <- yvar.names[regr.index]
## Incoming: T=tree R=response
## T1R1 T1R2, T2R1 T2R2, T3R1 T3R2, ...
## Yeilds tree.offset = c(1, 3, 5)
tree.offset <- array(1, ntree)
if (ntree > 1) {
tree.offset[2:ntree] <- length(regr.index)
}
tree.offset <- cumsum(tree.offset)
## The block offset calculation mirrors the tree offset calculation, but differs in only the primary dimension.
block.offset <- array(1, floor(ntree/block.size))
if (floor(ntree/block.size) > 1) {
block.offset[2:floor(ntree/block.size)] <- length(regr.index)
}
block.offset <- cumsum(block.offset)
## Incoming vimp rates: V=xvar R=response L=level
## V1R1 V1R2, V2R1 V2R2, V3R1 V3R2, ...
## Yeilds vimp.offset = c(1, 3, 5, ...)
vimp.offset <- array(1, vimp.count)
if (vimp.count > 1) {
vimp.offset[2:vimp.count] <- length(regr.index)
}
vimp.offset <- cumsum(vimp.offset)
iter.ensb.start <- 0
iter.ensb.end <- 0
iter.qntl.start <- 0
iter.qntl.end <- 0
## From the native code:
## "allEnsbRGR"
## -> of dim [regr.count] x [obsSize]
## From the native code:
## "allEnsbQNT"
## "oobEnsbQNT"
## -> of dim [regr.count] x [length(prob)] x [n]
## From the native code:
## "perfRegr"
## -> of dim [regr.count] x [ntree]
## To the R code:
## -> of dim [[regr.count]] x [ntree]
## From the native code:
## "blockRegr"
## -> of dim [block.cnt] x [regr.count]
## To the R code:
## -> of dim [[regr.count]] x [block.cnt]
## From the native code:
## "vimpRegr"
## -> of dim [n.vxar] x [regr.count]
## To the R code:
## -> of dim [[regr.count]] x [n.xvar]
for (i in 1:length(m.target.idx)) {
target.idx <- which (regr.index == m.target.idx[i])
if (length(target.idx) > 0) {
iter.ensb.start <- iter.ensb.end
iter.ensb.end <- iter.ensb.end + n.observed
iter.qntl.start <- iter.qntl.end
iter.qntl.end <- iter.qntl.end + (length(prob) * n.observed)
vimp.names <- if(vimp.joint) "joint" else importance.xvar
predicted <- (if (!is.null(nativeOutput$allEnsbRGR))
array(nativeOutput$allEnsbRGR[(iter.ensb.start + 1):iter.ensb.end], n.observed) else NULL)
regrOutput[[target.idx]] <- list(predicted = predicted)
remove(predicted)
predicted.oob <- (if (!is.null(nativeOutput$oobEnsbRGR))
array(nativeOutput$oobEnsbRGR[(iter.ensb.start + 1):iter.ensb.end], n.observed) else NULL)
regrOutput[[target.idx]] <- c(regrOutput[[target.idx]], predicted.oob = list(predicted.oob))
remove(predicted.oob)
quantile <- (if (!is.null(nativeOutput$allEnsbQNT))
array(nativeOutput$allEnsbQNT[(iter.qntl.start + 1):iter.qntl.end],
c(n.observed, length(prob))) else NULL)
regrOutput[[target.idx]] <- c(regrOutput[[target.idx]], quantile = list(quantile))
remove(quantile)
quantile.oob <- (if (!is.null(nativeOutput$oobEnsbQNT))
array(nativeOutput$oobEnsbQNT[(iter.qntl.start + 1):iter.qntl.end],
c(n.observed, length(prob))) else NULL)
regrOutput[[target.idx]] <- c(regrOutput[[target.idx]], quantile.oob = list(quantile.oob))
remove(quantile.oob)
if (!is.null(nativeOutput$perfRegr)) {
err.rate <- nativeOutput$perfRegr[tree.offset]
tree.offset <- tree.offset + 1
regrOutput[[target.idx]] <- c(regrOutput[[target.idx]], err.rate = list(err.rate))
remove(err.rate)
}
if (!is.null(nativeOutput$blockRegr)) {
err.block.rate <- nativeOutput$blockRegr[block.offset]
block.offset <- block.offset + 1
regrOutput[[target.idx]] <- c(regrOutput[[target.idx]], err.block.rate = list(err.block.rate))
remove(err.block.rate)
}
if (!is.null(nativeOutput$vimpRegr)) {
importance <- nativeOutput$vimpRegr[vimp.offset]
names(importance) <- vimp.names
vimp.offset <- vimp.offset + 1
regrOutput[[target.idx]] <- c(regrOutput[[target.idx]], importance = list(importance))
remove(importance)
}
}
}
nativeOutput$allEnsbRGR <- NULL
nativeOutput$oobEnsbRGR <- NULL
nativeOutput$allEnsbQNT <- NULL
nativeOutput$oobEnsbQNT <- NULL
nativeOutput$perfRegr <- NULL
nativeOutput$vimpRegr <- NULL
nativeOutput$blockRegr <- NULL
## When TRUE we revert to univariate nomenclature for all the outputs.
if(univariate.nomenclature) {
if ((class.count == 0) & (regr.count == 1)) {
names(regrOutput) <- NULL
rfsrcOutput <- c(rfsrcOutput, unlist(regrOutput, recursive=FALSE))
}
else {
rfsrcOutput <- c(rfsrcOutput, regrOutput = list(regrOutput))
}
}
else {
rfsrcOutput <- c(rfsrcOutput, regrOutput = list(regrOutput))
}
}
}
class(rfsrcOutput) <- c("ltrcrsf", "predict", family)
return(rfsrcOutput)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.