Description Usage Arguments Details Value References See Also Examples
These functions provide the density, distribution function, quantile function, and random generation for the univariate, symmetric, power exponential distribution with location parameter mu, scale parameter sigma, and kurtosis parameter kappa.
1 2 3 4 |
x, q |
These are each a vector of quantiles. |
p |
This is a vector of probabilities. |
n |
This is the number of observations, which must be a positive integer that has length 1. |
mu |
This is the location parameter mu. |
sigma |
This is the scale parameter sigma, which must be positive. |
kappa |
This is the kurtosis parameter kappa, which must be positive. |
log,log.p |
Logical. If |
lower.tail |
Logical. If |
Application: Continuous Univariate
Density: p(theta) = 1/(2 kappa^(1/kappa) Gamma(1+1/kappa) sigma) * exp(-(|theta - mu|^kappa)/(kappa sigma^kappa))
Inventor: Subbotin, M.T. (1923)
Notation 1: theta ~ PE(mu, sigma, kappa)
Notation 2: p(theta) = PE(theta | mu, sigma, kappa)
Parameter 1: location parameter mu
Parameter 2: scale parameter sigma > 0
Parameter 3: kurtosis parameter kappa > 0
Mean: E(theta) = mu
Variance: var(theta) =
Mode: mode(theta) = mu
The power exponential distribution is also called the exponential power distribution, generalized error distribution, generalized Gaussian distribution, and generalized normal distribution. The original form was introduced by Subbotin (1923) and re-parameterized by Lunetta (1963). These functions use the more recent parameterization by Lunetta (1963). A shape parameter, kappa > 0, is added to the normal distribution. When kappa=1, the power exponential distribution is the same as the Laplace distribution. When kappa=2, the power exponential distribution is the same as the normal distribution. As kappa -> infinity, this becomes a uniform distribution in (mu-sigma, mu+sigma). Tails that are heavier than normal occur when kappa < 2, or lighter than normal when kappa > 2. This distribution is univariate and symmetric, and there exist multivariate and asymmetric versions.
These functions are similar to those in the normalp
package.
dpe
gives the density,
ppe
gives the distribution function,
qpe
gives the quantile function, and
rpe
generates random deviates.
Lunetta, G. (1963). "Di una Generalizzazione dello Schema della Curva Normale". Annali della Facolt'a di Economia e Commercio di Palermo, 17, p. 237–244.
Subbotin, M.T. (1923). "On the Law of Frequency of Errors". Matematicheskii Sbornik, 31, p. 296–301.
dlaplace
,
dlaplacep
,
dmvpe
,
dnorm
,
dnormp
,
dnormv
, and
dunif
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | library(LaplacesDemon)
x <- dpe(1,0,1,2)
x <- ppe(1,0,1,2)
x <- qpe(0.5,0,1,2)
x <- rpe(100,0,1,2)
#Plot Probability Functions
x <- seq(from=0.1, to=3, by=0.01)
plot(x, dpe(x,0,1,0.1), ylim=c(0,1), type="l", main="Probability Function",
ylab="density", col="red")
lines(x, dpe(x,0,1,2), type="l", col="green")
lines(x, dpe(x,0,1,5), type="l", col="blue")
legend(1.5, 0.9, expression(paste(mu==0, ", ", sigma==1, ", ", kappa==0.1),
paste(mu==0, ", ", sigma==1, ", ", kappa==2),
paste(mu==0, ", ", sigma==1, ", ", kappa==5)),
lty=c(1,1,1), col=c("red","green","blue"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.