Nothing
###########################################################################
# Approximate Bayesian Bootstrap (ABB) #
# #
# The purpose of the ABB function is to perform Multiple Imputation (MI) #
# with the Approximate Bayesian Bootstrap (ABB). #
###########################################################################
ABB <- function(X, K=1)
{
### Initial Checks
if(missing(X)) stop("X is a required argument.")
if(!is.matrix(X)) X <- as.matrix(X)
J <- ncol(X)
N <- nrow(X)
### Missingness Indicator
M <- X*0
M[which(is.na(X))] <- 1
if(sum(M) == 0) stop("There are no missing values to impute.")
M.sums <- colSums(M)
### Approximate Bayesian Bootstrap
MI <- list()
for (k in 1:K) {
imp <- NULL
for (j in 1:J) {
if(M.sums[j] > 0) {
### Sample X.star.obs | X.obs
X.obs <- X[which(M[,j] == 0),j]
X.star.obs <- sample(X.obs, length(X.obs),
replace=TRUE)
### Sample X.star.mis | X.star.obs
X.star.mis <- sample(X.star.obs, M.sums[j],
replace=TRUE)
if(length(imp) > 0) imp <- c(imp, X.star.mis)
else imp <- X.star.mis}
}
MI[[k]] <- imp
}
return(MI)
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.