Nothing
###########################################################################
# BayesianBootstrap #
# #
# The purpose of the BayesianBootstrap is to allow the user to produce #
# either bootstrapped weights or statistics. #
###########################################################################
BayesianBootstrap <- function(X, n=1000, Method="weights", Status=NULL)
{
### Initial Checks
if(missing(X)) stop("X is a required argument.")
if(!is.matrix(X)) X <- as.matrix(X)
if(any(!is.finite(X))) stop("Non-finite values found in X.")
S <- round(abs(n))
if(S < 1) S <- 1
if(!(is.numeric(Status) & (length(Status) == 1))) Status <- S + 1
else {
Status <- round(abs(Status))
if(Status < 1 | Status > S) Status <- S + 1}
N <- nrow(X)
J <- ncol(X)
if(identical(Method, "weights")) {
BB <- replicate(S, diff(c(0, sort(runif(N-1)), 1)))
return(BB)}
### Bayesian Bootstrap: Statistics
BB <- vector("list", S)
for (s in 1:S) {
if(s %% Status == 0) cat("\nBootstrapped Samples:", s)
u <- c(0, sort(runif(N - 1)), 1)
g <- diff(u)
BB[[s]] <- Method(X, g)}
if(Status < S) cat("\n\nThe Bayesian Bootstrap has finished.\n\n")
### Output
BB <- lapply(BB, identity)
if(is.vector(BB[[1]]))
if(length(BB[[1]]) == 1) BB <- as.matrix(BB)
else {
B <- matrix(unlist(BB), S, length(BB[[1]]), byrow=TRUE)
colnames(B) <- names(BB[[1]])
BB <- B
}
else {
if(is.null(dim(BB[[1]])))
stop("Method must return a vector, matrix or array")
B <- array(NA, dim=c(S, dim(BB[[1]])))
for (s in 1:S) {B[s,,] <- BB[[s]]}
BB <- B
}
return(BB)
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.