Nothing
###########################################################################
# Kullback-Leibler Divergence (KLD) #
# #
# The purpose of the KLD function is to calculate the Kullback-Leibler #
# divergences between two probability distributions, p(x) and p(y). #
###########################################################################
KLD <- function(px, py, base=exp(1))
{
### Initial Checks
if(!is.vector(px)) px <- as.vector(px)
if(!is.vector(py)) py <- as.vector(py)
n1 <- length(px)
n2 <- length(py)
if(!identical(n1, n2)) stop("px and py must have the same length.")
if(any(!is.finite(px)) || any(!is.finite(py)))
stop("px and py must have finite values.")
if(any(px <= 0)) px <- exp(px)
if(any(py <= 0)) py <- exp(py)
px[which(px < .Machine$double.xmin)] <- .Machine$double.xmin
py[which(py < .Machine$double.xmin)] <- .Machine$double.xmin
### Normalize
px <- px / sum(px)
py <- py / sum(py)
### Kullback-Leibler Calculations
KLD.px.py <- px * (log(px, base=base)-log(py, base=base))
KLD.py.px <- py * (log(py, base=base)-log(px, base=base))
sum.KLD.px.py <- sum(KLD.px.py)
sum.KLD.py.px <- sum(KLD.py.px)
mean.KLD <- (KLD.px.py + KLD.py.px) / 2
mean.sum.KLD <- (sum.KLD.px.py + sum.KLD.py.px) / 2
### Output
out <- list(KLD.px.py=KLD.px.py, #KLD[i](p(x[i]) || p(y[i]))
KLD.py.px=KLD.py.px, #KLD[i](p(y[i]) || p(x[i]))
mean.KLD=mean.KLD,
sum.KLD.px.py=sum.KLD.px.py, #KLD(p(x) || p(y))
sum.KLD.py.px=sum.KLD.py.px, #KLD(p(y) || p(x))
mean.sum.KLD=mean.sum.KLD,
intrinsic.discrepancy=min(sum.KLD.px.py, sum.KLD.py.px))
return(out)
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.