Nothing
###########################################################################
# Sampling Importance Resampling (SIR) #
# #
# The purpose of the SIR function is to perform sampling importance #
# re-sampling, usually to draw samples from the posterior as output from #
# LaplaceApproxmation function. This function is similar to the sir #
# function in the LearnBayes package. #
###########################################################################
SIR <- function(Model, Data, mu, Sigma, n=1000, CPUs=1, Type="PSOCK")
{
if(missing(Model)) stop("The Model function is required.")
if(missing(Data)) stop("The Data argument is required.")
if(missing(mu)) stop("The mu argument is required.")
if(!is.vector(mu)) mu <- as.vector(mu)
if(missing(Sigma)) stop("The Sigma argument is required.")
if(!is.symmetric.matrix(Sigma)) Sigma <- as.symmetric.matrix(Sigma)
if(!is.positive.definite(Sigma)) Sigma <- as.positive.definite(Sigma)
if(length(mu) != nrow(Sigma)) stop("mu and Sigma are incompatible.")
### Sampling
k <- length(mu)
theta <- rmvn(n, mu, Sigma)
theta[which(!is.finite(theta))] <- 0
colnames(theta) <- Data[["parm.names"]]
### Importance
lf <- matrix(0, n, 1)
### Non-Parallel Processing
if(CPUs == 1) {
for (i in 1:n) {
mod <- Model(theta[i,], Data)
lf[i] <- mod[["LP"]]
theta[i,] <- mod[["parm"]]}
}
else { ### Parallel Processing
detectedCores <- max(detectCores(),
as.integer(Sys.getenv("NSLOTS")), na.rm=TRUE)
cat("\n\nCPUs Detected:", detectedCores, "\n")
if(CPUs > detectedCores) {
cat("\nOnly", detectedCores, "will be used.\n")
CPUs <- detectedCores}
cl <- makeCluster(CPUs, Type)
varlist <- unique(c(ls(), ls(envir=.GlobalEnv),
ls(envir=parent.env(environment()))))
clusterExport(cl, varlist=varlist, envir=environment())
clusterSetRNGStream(cl)
mod <- parLapply(cl, 1:nrow(theta),
function(x) Model(theta[x,], Data))
stopCluster(cl)
lf <- unlist(lapply(mod,
function(x) x[["LP"]]))[1:nrow(theta)]
theta <- matrix(unlist(lapply(mod,
function(x) x[["parm"]])), nrow(theta), ncol(theta))
rm(mod)}
lp <- dmvn(theta, mu, Sigma, log=TRUE)
md <- max(lf - lp)
lw <- lf - lp - md
if(any(!is.finite(lw)))
lw[!is.finite(lw)] <- min(lw[is.finite(lw)])
probs <- exp(lw - logadd(lw))
### Resampling
options(warn=-1)
indices <- try(sample.int(n, size=n, replace=TRUE, prob=probs),
silent=TRUE)
options(warn=0)
if(inherits(indices, "try-error")) indices <- 1:n
if(k > 1) theta <- theta[indices,]
else theta <- theta[indices]
return(theta)
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.