Nothing
#' @title Plot differential splicing analysis results based on mean PSI difference
#'
#' @description Scatterplot of differential splicing analysis results based on mean PSI difference between 2 groups of cells. x-axis represents the mean PSI values of cell group 1. y-axis represents the mean PSI values of cell group 2.
#'
#' @param MarvelObject Marvel object. S3 object generated from \code{CompareValues} function.
#' @param method Character string. The statistical method used for differential splicing analysis.
#' @param pval Numeric value. Adjusted p-value below which the splcing event are considered as statistically significant and will consequently be color-annotated on the plot.
#' @param delta Numeric value. The positive (and negative) value specified above (and below) which the splicing events are considered to be statistically significant and will consequently be color-annotated on the plot.
#' @param point.size Numeric value. The point size for the data points. Default value is \code{1}.
#' @param anno Logical value. If set to \code{TRUE}, the specific gene names will be annotated on the plot. Speficified together with \code{anno.tran_id}.
#' @param anno.tran_id Vector of character strings. When \code{anno} set to \code{TRUE}, the coordinates of the splicing events to be annotated on the plot.
#' @param label.size Numeric value. Only applicable if \code{anno} set to TRUE. Size of the gene name labels.
#' @param xlabel.size Numeric value. Font size of the xtick labels. Default is \code{8}.
#' @param point.alpha Numeric value. Transpancy of data points. Default is \code{1}.
#' @param event.types Vector of character string(s). The specific splicing event to plot. May take any one or more of the following values \code{"SE"}, \code{"MXE"}, \code{"RI"}, \code{"A5SS"}, \code{"A3SS"}, \code{"AFE"}, and \code{"ALE"}.
#' @param event.types.colors Vector of character string(s). Customise colors as per splicing event type specified in \code{event.types} option. Should be of same length as \code{event.types} option.
#'
#' @return An object of class S3 containing with new slot \code{MarvelObject$DE$PSI$Plot[["method"]]}.
#'
#' @importFrom plyr join
#' @import ggplot2
#' @import scales
#'
#' @export
#'
#' @examples
#' marvel.demo <- readRDS(system.file("extdata/data", "marvel.demo.rds", package="MARVEL"))
#'
#' marvel.demo <- PlotDEValues.PSI.Mean.g2vsg1(MarvelObject=marvel.demo,
#' method="ad",
#' pval=0.10,
#' delta=5
#' )
#'
#' # Check output
#' marvel.demo$DE$PSI$Plot
#' marvel.demo$DE$PSI$Summary
PlotDEValues.PSI.Mean.g2vsg1 <- function(MarvelObject, method, pval, delta=5, point.size=1, xlabel.size=8, anno=FALSE, anno.tran_id=NULL, label.size=2.5, point.alpha=1.0, event.types=c("SE", "MXE", "RI", "A5SS", "A3SS", "AFE", "ALE"), event.types.colors=NULL) {
# Define arguments
MarvelObject <- MarvelObject
method <- method
df <- MarvelObject$DE$PSI$Table[[method]]
pval <- pval
delta <- delta
anno <- anno
anno.tran_id <- anno.tran_id
label.size <- label.size
point.size <- point.size
label.size <- label.size
xlabel.size <- xlabel.size
event.types <- event.types
event.types.colors <- event.types.colors
# Example arguments
#MarvelObject <- marvel
#method <- c("ad", "dts")
#df <- MarvelObject$DE$PSI$Table[[method]]
#pval <- c(0.10, 0.10)
#delta <- 10
#anno <- FALSE
#anno.tran_id <- c("chr6:90561622:90561667:-@chr6:90560214|90560234:90560076", "chrX:119629318:119629508:-@chrX:119625379|119625396:119625335")
#label.size <- 2.5
#point.size <- 1
#point.alpha <- 1
#event.types <- c("SE", "MXE", "RI", "A5SS", "A3SS", "AFE", "ALE")
#event.types.colors <- event.types.colors
##############################################
# Tabulate sig events
.list <- list()
for(i in 1:length(method)) {
# Subset relevent splicing DE results
de.psi <- MarvelObject$DE$PSI$Table[[method[i]]]
# Subset sig events
index <- which(abs(de.psi$mean.diff) > delta & de.psi$p.val.adj < pval[i] & de.psi$outlier==FALSE)
de.psi <- de.psi[index, ]
# Subset gene metadata
cols <- c("tran_id", "event_type", "gene_id", "gene_short_name", "mean.g1", "mean.g2")
de.psi <- de.psi[, cols]
# Save into list
.list[[i]] <- de.psi
}
df <- do.call(rbind.data.frame, .list)
df <- unique(df)
df$sig <- ifelse(df$mean.g2 > df$mean.g1, "up", "down")
# Append non-sig events
de.psi.2 <- MarvelObject$DE$PSI$Table[[method[1]]]
de.psi.2 <- de.psi.2[-which(de.psi.2$tran_id %in% df$tran_id), ]
cols <- c("tran_id", "event_type", "gene_id", "gene_short_name", "mean.g1", "mean.g2")
de.psi.2 <- de.psi.2[, cols]
de.psi.2$sig <- "n.s."
df <- rbind.data.frame(df, de.psi.2)
# Subset relevant event types
df <- df[which(df$event_type %in% event.types), ]
# Set factor levels
df$sig <- factor(df$sig, levels=c("up", "down", "n.s."))
df <- df[order(df$sig, decreasing=TRUE), ]
# Indicate color scheme
sig.up <- which(df$sig=="up")
sig.down <- which(df$sig=="down")
if(length(sig.up) != 0 & length(sig.down) != 0) {
col.breaks <- c("red", "blue", "gray")
} else if(length(sig.up) != 0 & length(sig.down) == 0) {
col.breaks <- c("red", "gray")
} else if(length(sig.up) == 0 & length(sig.down) != 0) {
col.breaks <- c("blue", "gray")
} else if(length(sig.up) == 0 & length(sig.down) == 0) {
col.breaks <- "gray"
}
# Create labels
if(anno==TRUE) {
if(is.null(event.types.colors[1])) {
# Create labels
df$label <- NA
df$gene_short_name.event_type <- paste(df$gene_short_name, " (", df$event_type, ")", sep="")
index <- which(df$tran_id %in% anno.tran_id)
df$label[index] <- df$gene_short_name.event_type[index]
# Definition
data <- df
x <- data$mean.g1
y <- data$mean.g2
z <- data$sig
label <- data$label
maintitle <- ""
xtitle <- "Cell group 1 (mean PSI)"
ytitle <- "Cell group 2 (mean PSI)"
legendtitle <- ""
xmin <- 0 ; xmax <- 100 ; xinterval <- 25
ymin <- 0 ; ymax <- 100 ; yinterval <- 25
# Plot
plot <- ggplot() +
geom_point(data, mapping=aes(x=x, y=y, color=z), size=point.size, alpha=point.alpha) +
geom_abline(intercept=c(delta*-1, delta), size=0.25, linetype="dashed", color="black") +
ggrepel::geom_text_repel(data, mapping=aes(x=x, y=y, label=label), max.overlaps = Inf, box.padding = 0.5, size=label.size, max.time = 1, max.iter = 1e5, segment.alpha=0.5, segment.size=0.1, min.segment.length = 0) +
scale_color_manual(values=col.breaks) +
#ggrepel::geom_text_repel(data, mapping=aes(x=x, y=y, label=label), max.overlaps = Inf, box.padding = 1.0, size=2, max.time = 1, max.iter = 1e5, segment.alpha=0.5, segment.size=0.1, min.segment.length = 0) +
scale_x_continuous(breaks=seq(xmin, xmax, by=xinterval), limits=c(xmin, xmax)) +
scale_y_continuous(breaks=seq(ymin, ymax, by=yinterval), limits=c(ymin, ymax)) +
labs(title=maintitle, x=xtitle, y=ytitle, color=legendtitle) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.border=element_blank(),
plot.title=element_text(size=12, hjust=0.5),
axis.line=element_line(colour = "black"),
axis.title=element_text(size=10),
axis.text=element_text(size=10, colour="black"),
legend.position="none",
legend.title=element_text(size=8),
legend.text=element_text(size=8),
legend.key = element_blank()
)
} else {
# Define color scheme
# Create reference table for color scheme
event.type.color.df <- data.frame("event.types"=c(event.types, "n.s."),
"event.types.colors"=c(event.types.colors, "gray"),
stringsAsFactors=FALSE
)
# Censor n.s. events
df$event_type[which(df$sig=="n.s.")] <- "n.s."
# Subset events found
event.type.color.df <- event.type.color.df[which(event.type.color.df$event.types %in% unique(df$event_type)), ]
# Define final colors
df$event_type <- factor(df$event_type, levels=event.type.color.df$event.types)
col.breaks <- event.type.color.df$event.types.colors
# Reorder for asthetic purpose
df <- df[order(df$event_type, decreasing=TRUE), ]
# Create labels
df$label <- NA
df$gene_short_name.event_type <- paste(df$gene_short_name, " (", df$event_type, ")", sep="")
index <- which(df$tran_id %in% anno.tran_id)
df$label[index] <- df$gene_short_name.event_type[index]
# Definition
data <- df
x <- data$mean.g1
y <- data$mean.g2
z <- data$event_type
label <- data$label
maintitle <- ""
xtitle <- "Cell group 1 (mean PSI)"
ytitle <- "Cell group 2 (mean PSI)"
legendtitle <- ""
xmin <- 0 ; xmax <- 100 ; xinterval <- 25
ymin <- 0 ; ymax <- 100 ; yinterval <- 25
# Plot
plot <- ggplot() +
geom_point(data, mapping=aes(x=x, y=y, color=z), size=point.size, alpha=point.alpha) +
geom_abline(intercept=c(delta*-1, delta), size=0.25, linetype="dashed", color="black") +
ggrepel::geom_text_repel(data, mapping=aes(x=x, y=y, label=label), max.overlaps = Inf, box.padding = 0.5, size=label.size, max.time = 1, max.iter = 1e5, segment.alpha=0.5, segment.size=0.1, min.segment.length = 0) +
scale_color_manual(values=col.breaks) +
#ggrepel::geom_text_repel(data, mapping=aes(x=x, y=y, label=label), max.overlaps = Inf, box.padding = 1.0, size=2, max.time = 1, max.iter = 1e5, segment.alpha=0.5, segment.size=0.1, min.segment.length = 0) +
scale_x_continuous(breaks=seq(xmin, xmax, by=xinterval), limits=c(xmin, xmax)) +
scale_y_continuous(breaks=seq(ymin, ymax, by=yinterval), limits=c(ymin, ymax)) +
labs(title=maintitle, x=xtitle, y=ytitle, color=legendtitle) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.border=element_blank(),
plot.title=element_text(size=12, hjust=0.5),
axis.line=element_line(colour = "black"),
axis.title=element_text(size=10),
axis.text=element_text(size=10, colour="black"),
#legend.position="none",
legend.title=element_text(size=8),
legend.text=element_text(size=8),
legend.key = element_blank()
) +
guides(color = guide_legend(override.aes=list(size=2, ncol=1)))
}
########################################################################
} else {
if(is.null(event.types.colors[1])) {
# Definition
data <- df
x <- data$mean.g1
y <- data$mean.g2
z <- data$sig
maintitle <- ""
xtitle <- "Cell group 1 (mean PSI)"
ytitle <- "Cell group 2 (mean PSI)"
legendtitle <- ""
xmin <- 0 ; xmax <- 100 ; xinterval <- 25
ymin <- 0 ; ymax <- 100 ; yinterval <- 25
# Plot
plot <- ggplot() +
geom_point(data, mapping=aes(x=x, y=y, color=z), size=point.size, alpha=point.alpha) +
geom_abline(intercept=c(delta*-1, delta), size=0.25, linetype="dashed", color="black") +
scale_color_manual(values=col.breaks) +
#ggrepel::geom_text_repel(data, mapping=aes(x=x, y=y, label=label), max.overlaps = Inf, box.padding = 1.0, size=2, max.time = 1, max.iter = 1e5, segment.alpha=0.5, segment.size=0.1, min.segment.length = 0) +
scale_x_continuous(breaks=seq(xmin, xmax, by=xinterval), limits=c(xmin, xmax)) +
scale_y_continuous(breaks=seq(ymin, ymax, by=yinterval), limits=c(ymin, ymax)) +
labs(title=maintitle, x=xtitle, y=ytitle, color=legendtitle) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.border=element_blank(),
plot.title=element_text(size=12, hjust=0.5),
axis.line=element_line(colour = "black"),
axis.title=element_text(size=10),
axis.text=element_text(size=10, colour="black"),
legend.position="none",
legend.title=element_text(size=8),
legend.text=element_text(size=8),
legend.key = element_blank()
)
} else {
# Define color scheme
# Create reference table for color scheme
event.type.color.df <- data.frame("event.types"=c(event.types, "n.s."),
"event.types.colors"=c(event.types.colors, "gray"),
stringsAsFactors=FALSE
)
# Censor n.s. events
df$event_type[which(df$sig=="n.s.")] <- "n.s."
# Subset events found
event.type.color.df <- event.type.color.df[which(event.type.color.df$event.types %in% unique(df$event_type)), ]
# Define final colors
df$event_type <- factor(df$event_type, levels=event.type.color.df$event.types)
col.breaks <- event.type.color.df$event.types.colors
# Reorder for asthetic purpose
df <- df[order(df$event_type, decreasing=TRUE), ]
# Definition
data <- df
x <- data$mean.g1
y <- data$mean.g2
z <- data$event_type
maintitle <- ""
xtitle <- "Cell group 1 (mean PSI)"
ytitle <- "Cell group 2 (mean PSI)"
legendtitle <- ""
xmin <- 0 ; xmax <- 100 ; xinterval <- 25
ymin <- 0 ; ymax <- 100 ; yinterval <- 25
# Plot
plot <- ggplot() +
geom_point(data, mapping=aes(x=x, y=y, color=z), size=point.size, alpha=point.alpha) +
geom_abline(intercept=c(delta*-1, delta), size=0.25, linetype="dashed", color="black") +
scale_color_manual(values=col.breaks) +
#ggrepel::geom_text_repel(data, mapping=aes(x=x, y=y, label=label), max.overlaps = Inf, box.padding = 1.0, size=2, max.time = 1, max.iter = 1e5, segment.alpha=0.5, segment.size=0.1, min.segment.length = 0) +
scale_x_continuous(breaks=seq(xmin, xmax, by=xinterval), limits=c(xmin, xmax)) +
scale_y_continuous(breaks=seq(ymin, ymax, by=yinterval), limits=c(ymin, ymax)) +
labs(title=maintitle, x=xtitle, y=ytitle, color=legendtitle) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.border=element_blank(),
plot.title=element_text(size=12, hjust=0.5),
axis.line=element_line(colour = "black"),
axis.title=element_text(size=10),
axis.text=element_text(size=10, colour="black"),
#legend.position="none",
legend.title=element_text(size=8),
legend.text=element_text(size=8),
legend.key = element_blank()
) +
guides(color = guide_legend(override.aes=list(size=2, ncol=1)))
}
}
########################################################################
# Summary
tbl <- as.data.frame(table(df$sig))
names(tbl) <- c("sig", "freq")
##############################################
# Save to new slot
MarvelObject$DE$PSI$Plot <- plot
MarvelObject$DE$PSI$Summary <- tbl
# Return final object
return(MarvelObject)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.