Nothing
"summary.MCMCglmm"<-function(object, random=FALSE, ...){
DIC<-object$DIC
fixed.formula<-object$Fixed$formula
nF<-object$Fixed$nfl
nL<-object$Fixed$nll
if(random){
nF<-sum(rep(object$Random$nrl, object$Random$nfl))+nF
if(nF!=dim(object$Sol)[2]){stop("random effects not saved and cannot be summarised")}
}
solutions<-cbind(colMeans(object$Sol[,1:nF,drop=FALSE]), coda::HPDinterval(object$Sol[,1:nF,drop=FALSE]), effectiveSize(object$Sol[,1:nF,drop=FALSE]), 2*pmax(0.5/dim(object$Sol)[1], pmin(colSums(object$Sol[,1:nF,drop=FALSE]>0)/dim(object$Sol)[1], 1-colSums(object$Sol[,1:nF,drop=FALSE]>0)/dim(object$Sol)[1])))
if(nL>0){
solutions<-rbind(solutions, cbind(colMeans(object$Lambda), coda::HPDinterval(object$Lambda),effectiveSize(object$Lambda), 2*pmax(0.5/dim(object$Lambda)[1], pmin(colSums(object$Lambda>0)/dim(object$Lambda)[1], 1-colSums(object$Lambda>0)/dim(object$Sol)[1]))))
}
colnames(solutions)<-c("post.mean", "l-95% CI", "u-95% CI", "eff.samp", "pMCMC")
random.formula=object$Random$formula
residual.formula=object$Residual$formula
gterms<-sum(object$Random$nfl^2)
rterms<-sum(object$Residual$nfl^2)
covariances<-cbind(colMeans(object$VCV), coda::HPDinterval(object$VCV), effectiveSize(object$VCV))
colnames(covariances)<-c("post.mean", "l-95% CI", "u-95% CI","eff.samp")
if(gterms>0){
Gcovariances<-covariances[1:gterms,,drop=FALSE]
}else{
Gcovariances<-NULL
}
Rcovariances<-covariances[gterms+1:rterms,,drop=FALSE]
cstats<-attr(object$VCV, "mcpar")
cstats[4]<-dim(object$VCV)[1]
if(is.null(object$CP)){
cutpoints<-NULL
}else{
cutpoints<-cbind(colMeans(object$CP), coda::HPDinterval(object$CP), effectiveSize(object$CP))
colnames(cutpoints)<-c("post.mean", "l-95% CI", "u-95% CI", "eff.samp")
}
if(is.null(object$ThetaS)){
theta_scale<-NULL
}else{
theta_scale<-cbind(colMeans(object$ThetaS), coda::HPDinterval(object$ThetaS), effectiveSize(object$ThetaS), 2*pmax(0.5/dim(object$ThetaS)[1], pmin(colSums(object$ThetaS>0)/dim(object$ThetaS)[1], 1-colSums(object$ThetaS>0)/dim(object$ThetaS)[1])))
colnames(theta_scale)<-c("post.mean", "l-95% CI", "u-95% CI", "eff.samp", "pMCMC")
}
if(is.null(object$Random$nrt)){
Gterms<-NULL
}else{
Gterms<-rep(rep(1:length(object$Random$nrt), object$Random$nrt), object$Random$nfl^2)
}
Rterms<-rep(rep(1:length(object$Residual$nrt), object$Residual$nrt), object$Residual$nfl^2)
output<-list(DIC=DIC, fixed.formula=fixed.formula, random.formula=random.formula,residual.formula=residual.formula, solutions=solutions, Gcovariances=Gcovariances, Gterms=Gterms, Rcovariances=Rcovariances,Rterms=Rterms, cstats=cstats,cutpoints=cutpoints, theta_scale=theta_scale)
attr(output, "class")<-c("summary.MCMCglmm", "list")
output
}
"print.summary.MCMCglmm"<-function (x, digits = max(3, getOption("digits") - 3), has.Pvalue=TRUE, eps.Pvalue = 1/(x$cstats[4]-1), cstats=TRUE, ...)
{
if(cstats){
cat("\n Iterations =", paste(x$cstats[1], ":", x$cstats[2], sep=""))
cat("\n Thinning interval =" , x$cstats[3])
cat("\n Sample size =" , x$cstats[4], "\n")
}
cat("\n DIC:", x$DIC, "\n")
if(is.null(x$random.formula)==FALSE){
rcomponents<-split.direct.sum(as.character(x$random.formula)[2])
for(i in 1:length(rcomponents)){
if(i==1){
cat(paste("\n G-structure: ~", rcomponents[i], "\n\n", sep=""))
}else{
cat(paste("\n ~", rcomponents[i], "\n\n", sep=""))
}
if(i%in%x$Gterms){
print(as.data.frame(x$Gcovariance[x$Gterms==i,,drop=FALSE]), digits=digits, ...)
}else{
cat(" G-R structure below\n")
}
}
}
rcomponents<-split.direct.sum(as.character(x$residual.formula)[2])
for(i in 1:length(rcomponents)){
if(i==1){
cat(paste("\n R-structure: ~", rcomponents[i], "\n\n", sep=""))
}else{
cat(paste("\n ~", rcomponents[i], "\n\n", sep=""))
}
print(as.data.frame(x$Rcovariance[x$Rterms==i,,drop=FALSE]), digits=digits, ...)
}
cat("\n Location effects:", paste(as.expression(x$fixed.formula)), "\n\n")
printCoefmat(as.data.frame(x$solutions), has.Pvalue=has.Pvalue, digits=digits, eps.Pvalue=eps.Pvalue, ...)
if(!is.null(x$cutpoints)){
cat("\n Cutpoints:", "\n\n")
print(as.data.frame(x$cutpoints), digits=digits, ...)
}
if(!is.null(x$theta_scale)){
cat("\n Theta scale parameter:", "\n\n")
printCoefmat(as.data.frame(x$theta_scale), has.Pvalue=has.Pvalue, digits=digits, eps.Pvalue=eps.Pvalue, ...)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.