R/MODIStsp_vrt_create.R

Defines functions MODIStsp_vrt_create

Documented in MODIStsp_vrt_create

#' @title Create MODIStsp virtual files
#' @description	Function used to create virtual files from time series of single-band
#'  files corresponding to different acquisition dates. The function takes as input
#'  the folder in which the single-band files are stored, and creates a ENVI Meta
#'  file and/or a GDAL vrt file that allows access to the full time series as if
#'  it was a single physical file.
#'  Created virtual files are stored in the "Time Series" subfolder of `out_prod_folder``
#' @param out_prod_folder `character` Main output folder.
#' @param bandnames names of all layers available for the product being processed
#' @param indexes_bandnames names of all indexes available for the product being processed
#' @param indexes_nodata_out nodata value for indexes vrts
#' @param quality_bandnames names of all quality indicators available for the product being processed
#' @param quality_nodata_out nodata value for quality vrts
#' @param nodata_out `numeric` Output nodata value to be used in vrt files
#' @param file_prefixes `character array (2)` file_prefixes for TERRA and AQUA -
#'  used to identify the files corresponding to each sensor
#' @param ts_format `character ["ENVI" | "GDAL" | "Both"]` Required output format
#'  for virtual file.
#' @param out_format `character ["ENVI" | "GTiff"]` Format of images used as
#'  "input" for the vrt and contained in out_prod_folder/band folders.
#' @param verbose `logical` If FALSE, suppress processing messages, Default: TRUE
#' @inheritParams MODIStsp
#' @return NULL - the function is called for its side effects
#'
#' @author Lorenzo Busetto, phD (2014-2017)
#' @author Luigi Ranghetti, phD (2015)
#' @note License: GPL 3.0
#' @importFrom stringr str_sub str_detect
#' @importFrom raster raster stack nlayers setZ
#' @importFrom tools file_path_sans_ext
#' @importFrom gdalUtilities gdalbuildvrt
#'
MODIStsp_vrt_create <- function(
  sensor,
  out_prod_folder,
  bandnames, bandsel, nodata_out,
  indexes_bandnames, indexes_bandsel, indexes_nodata_out,
  quality_bandnames, quality_bandsel, quality_nodata_out,
  file_prefixes,
  ts_format, out_format,
  verbose) {

  if (length(sensor) == 2) {
    senslist <- c("Terra", "Aqua", "Mixed")
  } else {
    senslist <- sensor
  }

  for (sens_sel in senslist) {

    if (sens_sel == "Terra") {
      file_prefix <- file_prefixes[["Terra"]]
    }
    if (sens_sel == "Aqua")  {
      file_prefix <- file_prefixes[["Aqua"]]
    }
    if (sens_sel == "Mixed") {
      file_prefix <- paste(file_prefixes[["Terra"]], file_prefixes[["Aqua"]],
                           sep = "_")
    }

    if (sens_sel == "Combined") {
      file_prefix <- file_prefixes[["Terra"]]
    }

    meta_bands <- c(bandnames[which(bandsel == 1)],
                    indexes_bandnames[which(indexes_bandsel == 1)],
                    quality_bandnames[which(quality_bandsel == 1)])

    nodata_vals <- c(nodata_out[which(bandsel == 1)],
                     indexes_nodata_out[which(indexes_bandsel == 1)],
                     quality_nodata_out[which(quality_bandsel == 1)])


    if (basename(out_prod_folder) == "MAIA_Land_Surf_BRF_500") {
      warning("Creation of Time Series files for product MAIA_Land_Surf_BRF_500 is currently not possible!")
      return()
    }

    for (mb in seq_along(meta_bands)) {

      # Exclude VRT creation for products for which multiple multiple bands are
      # included in a single "date"

      meta_band    <- meta_bands[mb]
      if (!(meta_band %in% c("DSR_tot", "DSR_dir", "DSR_diff",
                             "PAR_tot", "PAR_dir", "PAR_diff",
                             "LC1_Percent", "LC2_Percent", "LC3_Percent"))) {
        nodata_value <- nodata_vals[mb]
        if (verbose) {
          message("[", date(), "] Creating Virtual Files and R time series for ", #nolint
                  "layer ", meta_band)
        }
        #- --------------------------------------------------------#
        # retrieve files list of the time series (ENVI format) ####
        # (both .dat and .hdr)
        #
        if (out_format == "ENVI") {
          # get list of ENVI files
          out_meta_files <- list.files(file.path(out_prod_folder, meta_band),
                                       pattern = "\\.dat$", full.names = TRUE)
          if (sens_sel != "Mixed")  {
            out_meta_files <- out_meta_files[grep(file_prefix, out_meta_files)]
          }

          out_meta_files_hdr <- list.files(file.path(out_prod_folder, meta_band), #nolint
                                           pattern = "\\.hdr$",
                                           full.names = TRUE)
          if (sens_sel != "Mixed")  {
            out_meta_files_hdr <- out_meta_files_hdr[grep(file_prefix,
                                                          out_meta_files_hdr)]
          }
        }

        #- --------------------------------------------------------#
        # retrieve files list of the time series (GTiff format) ####

        if (out_format == "GTiff") {
          # get list of TIFF files
          out_meta_files <- list.files(file.path(out_prod_folder, meta_band),
                                       pattern = "\\.tif$", full.names = TRUE)
          if (sens_sel != "Mixed")  {
            out_meta_files <- out_meta_files[grep(file_prefix, out_meta_files)]
          }
        }

        # Set a flag to 1 if "Mixed" time series are being processed but either
        # no AQUA or no TERRA files are available, so that in that case the
        # creation of META files for the mixed case is skipped !

        skip_flag <- 0
        if ((sens_sel == "Mixed") &
            ((length(grep(file_prefixes[["Aqua"]], out_meta_files)) == 0) |
             (length(grep(file_prefixes[["Terra"]], out_meta_files)) == 0))) {
          skip_flag <- 1
        }
        # If skip_flag == 1 (mixed TS, but data from TERRA or AQUA missing) do
        # nothing
        if (skip_flag != 1) {
          # If no files available, skip metadata creation
          if (length(out_meta_files) > 0) {

            #   ________________________________________________________________
            #   check/reset order of acquisition dates and files            ####
            #

            # retrieve the doys and years from filenames
            doys      <- stringr::str_sub(basename(out_meta_files), -7, -5)
            years     <- stringr::str_sub(basename(out_meta_files), -12, -9)
            # find the files order (by acq.date)
            acq_order <- order(as.numeric(paste0(years, doys)))

            # reorder doys and years
            doys           <- as.numeric(doys[acq_order])
            years          <- as.numeric(years[acq_order])
            #  Reorder Files  according to acquisition date (useful to have a
            #  META file with bands in the correct order
            out_meta_files <- out_meta_files[acq_order]
            temp_dates     <- as.Date(strptime(paste(years, doys),
                                               format = "%Y %j"))
            doy_min        <- min(doys[which(years == min(years))])
            year_min       <- min(years)
            doy_max        <- max(doys[which(years == max(years))])
            year_max       <- max(years)

            # __________________________________________________________________
            # Write the ENVI meta file if needed                            ####
            #
            if (any(stringr::str_detect(lapply(ts_format, tolower), "envi meta"))) {

              if (out_format == "ENVI") {

                # retrieve nsamp and nrow from first hdr file
                head_file   <- paste0(out_meta_files_hdr[1])
                fileConn_hd <- file(head_file)
                nsamp       <- strsplit(readLines(fileConn_hd)[4], "=")[[1]][2]
                nrow        <- strsplit(readLines(fileConn_hd)[5], "=")[[1]][2]
                close(fileConn_hd)
              }

              if (out_format == "GTiff") {
                # retrieve nsamp and nrow from first tif file
                nsamp <- suppressWarnings(raster::raster(out_meta_files[1])@ncols)
                nrow  <- suppressWarnings(raster::raster(out_meta_files[1])@nrows)
              }

              meta_dir <- file.path(out_prod_folder, "Time_Series", "ENVI_META",
                                    sens_sel, meta_band)
              dir.create(meta_dir, showWarnings = FALSE, recursive = TRUE)

              # define fileneame for meta file
              meta_filename <- file.path(meta_dir, paste(file_prefix, meta_band,
                                                         doy_min, year_min,
                                                         doy_max, year_max,
                                                         "META.dat", sep = "_"))
              fileConn_meta <- file(meta_filename, "w")
              # Write first line
              writeLines(c("ENVI META FILE"), fileConn_meta)
              # Write the lines of the META file corresponding to each input
              # file
              for (ff in out_meta_files) {
                writeLines(c(paste0("File : ", ff),
                             paste0("Bands: 1"),
                             paste0("Dims: 1-", nsamp, " , 1-", nrow), ""),
                           fileConn_meta)
              }
              close(fileConn_meta)

              # Compute the "wavelengths" - DOYS elapsed from 01/01/2000
              #
              temp_dates <- as.Date(strptime(paste(years, doys),
                                             format = "%Y %j"))
              elapsed <- signif(difftime(
                temp_dates, strptime(paste(2000, 001), format = "%Y %j"),
                units = "days"), 5)

              # Write the hdr file for the meta file
              fileConn_meta_hdr <- file(
                paste0(tools::file_path_sans_ext(meta_filename), ".hdr"), "w"
              )
              # Write first line
              writeLines(c("ENVI"), fileConn_meta_hdr)
              writeLines(c("Description = {ENVI META FILE}"), fileConn_meta_hdr)
              writeLines(paste0("samples = ", nsamp), fileConn_meta_hdr)	#nsamp
              writeLines(paste0("lines = ", nrow), fileConn_meta_hdr)			#lines
              writeLines(paste0("bands = ", length(out_meta_files)),     #nbands
                         fileConn_meta_hdr)
              writeLines(paste("header offset = 0"), fileConn_meta_hdr)
              # File type - fundamental
              writeLines(c("file type = ENVI Meta File"), fileConn_meta_hdr)
              writeLines(c("read procedures = {envi_read_spatial_m, envi_read_spectral_m}"), #nolint
                         fileConn_meta_hdr)
              # Band names
              writeLines(c("band names = {",
                           paste(basename(out_meta_files), collapse = "," ), "}"), #nolint
                         fileConn_meta_hdr)
              writeLines(c("wavelength units = DOY"), fileConn_meta_hdr)
              # Wavelengths == DOY from 01/01/2000
              writeLines(c("wavelength = {",
                           paste(as.numeric(elapsed), collapse = ","), "}"),
                         fileConn_meta_hdr)
              # Data Ignore Value
              writeLines(c("data ignore value = ", nodata_value[[1]]),
                         fileConn_meta_hdr, sep = " ")
              writeLines("", fileConn_meta_hdr)		# Dummy
              close(fileConn_meta_hdr)

            }
            #   ________________________________________________________________
            #   # Write the GDAL vrt file if needed                         ####
            #
            if (any(stringr::str_detect(lapply(ts_format, tolower), "gdal vrt"))) {

              meta_dir <- file.path(out_prod_folder, "Time_Series", "GDAL",
                                    sens_sel,
                                    meta_band)
              dir.create(meta_dir, showWarnings = FALSE, recursive = TRUE)

              meta_filename <- file.path(meta_dir, paste(file_prefix, meta_band,
                                                         doy_min, year_min,
                                                         doy_max, year_max,
                                                         "GDAL.vrt",
                                                         sep = "_"))

              if (length(split_nodata_values(nodata_value)[[1]]) == 1) {
                
              gdalUtilities::gdalbuildvrt(out_meta_files, meta_filename,
                                      separate = TRUE,
                                      srcnodata = nodata_value,
                                      vrtnodata = nodata_value)
              } else {
                gdalUtilities::gdalbuildvrt(out_meta_files, meta_filename,
                                      separate = TRUE)
              }

            } # end If on necessity to build GDAL vrt files

            #   ________________________________________________________________
            #   Create RasterStacks if needed                               ####
            #
            if (any(stringr::str_detect(lapply(ts_format, tolower), "rasterstack"))) {

              meta_dir <- file.path(out_prod_folder, "Time_Series", "RData",
                                    sens_sel, meta_band)
              dir.create(meta_dir, showWarnings = FALSE, recursive = TRUE)

              # create stack. Use "quick" since already sure about alignment !
              # raster_ts <- raster::stack(lapply(out_meta_files,
              #                                   FUN = function(x) {
              #                                     rst <- raster::stack(x)
              #
              #                                     rst}),
              #                            quick = TRUE)
              raster_ts <- suppressWarnings(raster::stack(out_meta_files, quick = TRUE))

              # Add the "time" dimension to the rasterstack
              if (raster::nlayers(raster_ts) != length(temp_dates)) {
                temp_dates <- rep(temp_dates,
                                  each = raster::nlayers(raster_ts) / length(temp_dates))
              }
              raster_ts <- raster::setZ(raster_ts, temp_dates, name = "time")
              RData_filename <- file.path(meta_dir, paste(file_prefix,
                                                          meta_band,
                                                          doy_min, year_min,
                                                          doy_max, year_max,
                                                          "RData.RData",
                                                          sep = "_"))
              save(raster_ts, file = RData_filename)

            } # end If on necessity to build R Stack files
          }
        }
      } else {
        if (verbose) {
          message("[", date(), "] Skipping creation of  Virtual Files and R
                  time series for layer ", meta_band, "because it is multiband")
        }
      }
    }
  }
}

Try the MODIStsp package in your browser

Any scripts or data that you put into this service are public.

MODIStsp documentation built on Oct. 13, 2023, 5:11 p.m.