Description Usage Arguments Value Author(s) Examples
View source: R/summaryROCPlot.R
Generate a plot with a summary ROC curve
1 2 | summaryROCPlot(metaObject, filterObject, bootstrapReps = 500,
orderByAUC = TRUE, alphaBetaPlots = TRUE)
|
metaObject |
a Meta object which must have the $originalData populated |
filterObject |
a MetaFilter object containing the signature genes that will be used for calculating the score |
bootstrapReps |
number of bootstrap simulations to run for confidence interval on summary ROC |
orderByAUC |
if TRUE, then order legend by summary AUC. Otherwise, use default ordering. |
alphaBetaPlots |
if TRUE, then draw forest plots of alpha and beta. If false, suppress plotting. |
Generates a ROC plot for all datasets
Timothy E. Sweeney
1 2 3 4 5 | ## Not run:
summaryROCPlot(tinyMetaObject,filterObject =
tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)
## End(Not run)
|
Whole Blood Study 1 Bootstrapping...
Whole Blood Study 2 Bootstrapping...
PBMC Study 1 Bootstrapping...
N tstar_alpha SE_alpha tstar_beta SE_beta
Whole Blood Study 1 49 2.290973 0.07439752 -0.2658663 0.05670437
Whole Blood Study 2 142 2.755875 0.02174051 -0.2138215 0.01161228
PBMC Study 1 115 4.403337 0.03749007 -0.3617431 0.01628389
Whole Blood Study 1 Bootstrapping...
Whole Blood Study 2 Bootstrapping...
PBMC Study 1 Bootstrapping...
N tstar_alpha SE_alpha tstar_beta SE_beta
Whole Blood Study 1 49 2.286690 0.07326695 -0.2633483 0.05353488
Whole Blood Study 2 142 2.755560 0.02103828 -0.2136221 0.01170006
PBMC Study 1 115 4.402778 0.03950574 -0.3614891 0.01730615
Random-effects meta-analysis
Call: rmeta::meta.summaries(d = tstar_alpha, se = SE_alpha * sqrt(N),
method = method)
Summary effect=3.15 95% CI (2, 4.31)
Estimated heterogeneity variance: 0.88 p= 0.001
Random-effects meta-analysis
Call: rmeta::meta.summaries(d = tstar_beta, se = SE_beta * sqrt(N),
method = method)
Summary effect=-0.267 95% CI (-0.476, -0.0573)
Estimated heterogeneity variance: 0 p= 0.816
Summary ROC
At optimal cutoff, summary sensitivity = 78.33%, summary specificity = 88.9%
At summary sensitivity = 95%, summary specificity = 0.313% sens spec PPV NPV acc
Whole Blood Study 1 0.758 0.875 0.926 0.636 0.796
Whole Blood Study 2 0.769 0.844 0.857 0.750 0.803
PBMC Study 1 0.903 0.833 0.979 0.500 0.896
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.