R/spom.r

Defines functions spom

Documented in spom

spom <-
  function(sp,kern,conn,colnz,ext,param_df,beta1=NULL,b=1,c1=NULL,c2=NULL,z=NULL,R=NULL,succ="none",max_age=1)
  {
    if(!inherits(sp, "metapopulation"))
    #if (class(sp)!="metapopulation") 
    {
      stop(paste(sp, " should be an object of class class 'metapopulation'.", sep=""), call. = FALSE)
    }
    
    if (nrow(sp$nodes.characteristics)==0){
     
    species2 <- numeric(0)
    
    turn <- numeric(0)
      
    p3 <- cbind(sp$nodes.characteristics, species2, turn)  

    nr_turn <- 0
    
    p4 <- list(mapsize=sp$mapsize, minimum.distance=sp$minimum.distance,
               mean.area=sp$mean.area, SD.area=sp$SD.area,
               number.patches=sp$number.patches, dispersal=sp$dispersal,
               distance.to.neighbours=sp$distance.to.neighbours,
               nodes.characteristics=p3,turnover=nr_turn)
    }
    
    if (nrow(sp$nodes.characteristics)>1){
    
    alpha <- param_df[1,]
    y <- param_df[3,]
    e <- param_df[4,]
    x <- param_df[2,]
    dfsp <- sp$nodes.characteristics
    A <- dfsp$areas
    p <- dfsp$species
    dist1 <- dist(dfsp[,1:2])
    if(kern == "op1")
    {
      kern_m <- as.matrix(exp(-alpha*dist1))
      diag(kern_m) <- 0
      kern_m <- as.data.frame(kern_m)
    }
    if(kern == "op2")
    {
      kern_m <- as.matrix(1/(1+alpha*(dist1^beta1)))
      diag(kern_m) <- 0
      kern_m <- as.data.frame(kern_m)
    }
    if(conn == "op1")
    {
      Si <- sweep(kern_m, 2, A^b, "*")
      S <- as.vector(rowSums(Si[, p > 0, drop=FALSE]))
    }
    if(conn == "op2")
    {
      Si <- sweep(kern_m, 2, A^b, "*")
      S <- as.vector(rowSums(Si[, p > 0, drop=FALSE]))
      S <- (A^c1)*S
    }
    if(colnz == "op1")
    {
      C1 <- S^2/((S^2)+y^2)
    }
    if(colnz == "op2")
    {
      C1 <- 1 - exp(-y*S)
    }
    if(colnz == "op3")
    {
      C1 <- S^z/(S^z+(1/c2))
    }
    if(ext == "op1")
    {
      E <- e/(A^x)
      E <- ifelse(E>1, 1, E)
    }
    if(ext == "op2")
    {
      E <- 1-exp((-e)/(A^x))
    }
    if(ext == "op3")
    {
      E <- (e/A^x)*(1-C1)^R
      E <- ifelse(E>1, 1, E)
    }
    
    if(max_age!=1){
      rescale <- function(x) (x-min(x))/(max(x) - min(x))
      age_vector <- dfsp$age 
      time_span <- 1:max_age
      time_span2 <- (-(max_age/2):(max_age/2))
      time_span2 <- time_span2[-((length(time_span2)/2)+1)]
      
      if(succ == "early"){
        F1 <- rescale(1/(1+exp(-0.09*time_span2)))
        F2 <- cbind(time_span,round(F1,4))
        E2 <- vector()
        for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          E2[z] <- as.vector(F2[match1,])[2]
        }
        E <- E+E2-(E*E2)
		####
		F3 <- rescale(1/(1+exp(0.09*time_span2)))
        F4 <- cbind(time_span,round(F3,4))
        C2 <- vector()
        for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          C2[z] <- as.vector(F4[match1,])[2]
        }
        C1 <- C1+C2-(C1*C2)
		####
      }
      
      if(succ == "mid"){
        F1 <- ifelse(time_span<50,rescale(exp(0.08*(-time_span))),rescale(exp(0.08*(time_span))))
        F2 <- cbind(time_span,round(F1,4))
        E2 <- vector()
        for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          E2[z] <- as.vector(F2[match1,])[2]
        }
        E <- E+E2-(E*E2)
		####
		F3 <- ifelse(time_span<50,rescale(-exp(0.08*(-time_span))),rescale(-exp(0.08*(time_span))))
        F4 <- cbind(time_span,round(F3,4))
        C2 <- vector()
        for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          C2[z] <- as.vector(F4[match1,])[2]
        }
        C1 <- C1+C2-(C1*C2)
		####
	    }
      
      if(succ == "late"){
        F1 <- rescale(1/(1+exp(0.09*time_span2)))
        F2 <- cbind(time_span,round(F1,4))
        E2 <- vector()
        for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          E2[z] <- as.vector(F2[match1,])[2]
        }
        E <- E+E2-(E*E2)
        ####
		F3 <- rescale(1/(1+exp(-0.09*time_span2)))
		F4 <- cbind(time_span,round(F3,4))
        C2 <- vector()
        for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          C2[z] <- as.vector(F4[match1,])[2]
        }
        C1 <- C1+C2-(C1*C2)	  
	    ####
	  }
      
      if(succ == "none"){
      
      }
    }
    
    cond <- ifelse(p, (1-C1)*E, C1)
    species2 <- ifelse(runif(length(p)) < cond, !p, p)
    turn <- ifelse (dfsp$species!=species2, 1, 0)
    nr_turn <- sum(turn)
    p3 <- cbind(sp$nodes.characteristics, species2, turn)
    p4 <- list(mapsize=sp$mapsize, minimum.distance=sp$minimum.distance,
               mean.area=sp$mean.area, SD.area=sp$SD.area,
               number.patches=sp$number.patches, dispersal=sp$dispersal,
               distance.to.neighbours=sp$distance.to.neighbours,
               nodes.characteristics=p3,turnover=nr_turn)
    
    }
    
    if (nrow(sp$nodes.characteristics)==1){
      
      e <- param_df[4,]
      x <- param_df[2,]
      A <- sp$nodes.characteristics$areas
      if(ext == "op1")
      {
        E <- e/(A^x)
        E <- ifelse(E>1, 1, E)
      }
      if(ext == "op2")
      {
        E <- 1-exp((-e)/(A^x))
      }
      if(ext == "op3")
      {
        E <- (e/A^x)*(1-C1)^R
        E <- ifelse(E>1, 1, E)
      }
      
      if(max_age!=1){
        rescale <- function(x) (x-min(x))/(max(x) - min(x))
        dfsp <- sp$nodes.characteristics
        age_vector <- dfsp$age 
        time_span <- 1:max_age
        time_span2 <- (-(max_age/2):(max_age/2))
        time_span2 <- time_span2[-((length(time_span2)/2)+1)]
        
        if(succ == "early"){
          F1 <- rescale(1/(1+exp(-0.09*time_span2)))
          F2 <- cbind(time_span,round(F1,4))
          E2 <- vector()
          for(z in 1:length(age_vector)) {
            match1 <- age_vector[z]
            E2[z] <- as.vector(F2[match1,])[2]
          }
          E <- E+E2-(E*E2)
		  ####
		  F3 <- rescale(1/(1+exp(0.09*time_span2)))
          F4 <- cbind(time_span,round(F3,4))
          C2 <- vector()
          for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          C2[z] <- as.vector(F4[match1,])[2]
          }
          C1 <- C1+C2-(C1*C2)
		  ####
        }
        
        if(succ == "mid"){
          F1 <- ifelse(time_span<50,rescale(exp(0.08*(-time_span))),rescale(exp(0.08*(time_span))))
          F2 <- cbind(time_span,round(F1,4))
          E2 <- vector()
          for(z in 1:length(age_vector)) {
            match1 <- age_vector[z]
            E2[z] <- as.vector(F2[match1,])[2]
          }
          E <- E+E2-(E*E2)
		  ####
		  F3 <- ifelse(time_span<50,rescale(-exp(0.08*(-time_span))),rescale(-exp(0.08*(time_span))))
          F4 <- cbind(time_span,round(F3,4))
          C2 <- vector()
          for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          C2[z] <- as.vector(F4[match1,])[2]
          }
          C1 <- C1+C2-(C1*C2)
		  ####
        }
        
        if(succ == "late"){
          F1 <- rescale(1/(1+exp(0.09*time_span2)))
          F2 <- cbind(time_span,round(F1,4))
          E2 <- vector()
          for(z in 1:length(age_vector)) {
            match1 <- age_vector[z]
            E2[z] <- as.vector(F2[match1,])[2]
          }
          E <- E+E2-(E*E2)
		  ####
		  F3 <- rescale(1/(1+exp(-0.09*time_span2)))
		  F4 <- cbind(time_span,round(F3,4))
          C2 <- vector()
          for(z in 1:length(age_vector)) {
          match1 <- age_vector[z]
          C2[z] <- as.vector(F4[match1,])[2]
          }
          C1 <- C1+C2-(C1*C2)	  
	      ####
        }
        
        if(succ == "none"){
          
        }
      }
      
      species <- sp$nodes.characteristics$species
      species2 <- ifelse(runif(1) < E, 0, 1)
      turn <- ifelse(species==species2,0,1)
      
      p3 <- cbind(sp$nodes.characteristics, species2, turn)
      
      p4 <- list(mapsize=sp$mapsize, minimum.distance=sp$minimum.distance,
                 mean.area=sp$mean.area, SD.area=sp$SD.area,
                 number.patches=sp$number.patches, dispersal=sp$dispersal,
                 distance.to.neighbours=sp$distance.to.neighbours,
                 nodes.characteristics=p3,turnover=turn)
      
      }
return(p4)
}

Try the MetaLandSim package in your browser

Any scripts or data that you put into this service are public.

MetaLandSim documentation built on Jan. 13, 2023, 1:11 a.m.