Nothing
## Example 1: sample psis and relative abundances from Cohen et al. (2018)
## (no uncertainty in psi or relative abundance)
for (i in 1:length(samplePsis)) {
for (j in 1:length(sampleOriginRelN)){
cat("For psi:\n")
print(samplePsis[[i]])
cat("and origin relative abundance:", sampleOriginRelN[[j]], "\n")
print(reverseTransition(samplePsis[[i]], sampleOriginRelN[[j]]))
}
}
## Example 2: Common tern banding example (uncertainty in psi, not relative
## abundance)
# Number of MCMC iterations
ni. <- 1000 # reduced from 70000 for example speed
# Number of iterations to thin from posterior
nt. <- 1
# Number of iterations to discard as burn-in
nb. <- 500 # reduced from 20000 for example speed
# Number of MCMC chains
nc. <- 1 # reduced from 3 for example speed
COTE_banded <- c(10360, 1787, 2495, 336)
COTE_reencountered <- matrix(c(12, 0, 38, 15,
111, 7, 6, 2,
5, 0, 19, 4,
1123, 40, 41, 7),
4, 4,
dimnames = list(LETTERS[1:4], 1:4))
COTE_psi <- estTransition(originNames = LETTERS[1:4],
targetNames = 1:4,
banded = COTE_banded,
reencountered = COTE_reencountered,
verbose = 1,
nSamples = (ni. - nb.) / nt. * nc., nBurnin = nb.,
nThin = nt., nChains = nc.,
method = "MCMC")
COTE_psi
COTE_rev <- reverseTransition(COTE_psi, sampleOriginRelN[[1]],
nSamples = 2000)
COTE_rev
\donttest{
## Example 3: Uncertainty in both psi and relative abundance
# Number of populations
nOriginSites <- 3; originNames <- LETTERS[1:nOriginSites]
nTargetSites <- 4; targetNames <- 1:nTargetSites
originRelAbund <- c(1/3, 1/3, 1/3)
psiTrue <- array(0, c(nOriginSites, nTargetSites),
list(originNames, targetNames))
psiTrue[1,] <- c(0.22, 0.52, 0.16, 0.10)
psiTrue[2,] <- c(0.41, 0.31, 0.17, 0.11)
psiTrue[3,] <- c(0.10, 0.15, 0.42, 0.33)
rowSums(psiTrue)
rev <- reverseTransition(psiTrue, originRelAbund)
# Simulate abundance data on origin sites
# Number of routes w/i each population (assumed to be balanced)
routePerPop. <- 30 # reduced for example speed
# Number of years
nYears. <- 5 # reduced for example speed
# log(Expected number of birds counted at each route)
alphaPop. <- 1.95
# standard deviation of normal distribution assumed for route/observer random
# effects
sdRoute. <- 0.6
# standard deviation of normal distribution assumed for year random effects
sdYear. <- 0.18
# Number of MCMC iterations
ni. <- 1000 # reduced from 70000 for example speed
# Number of iterations to thin from posterior
nt. <- 1
# Number of iterations to discard as burn-in
nb. <- 500 # reduced from 20000 for example speed
# Number of MCMC chains
nc. <- 1 # reduced from 3 for example speed
sim_data <- simCountData(nStrata = nOriginSites, routesPerStrata = routePerPop.,
nYears = nYears., alphaStrat = alphaPop.,
sdRoute = sdRoute., sdYear = sdYear.)
# Estimate population-level abundance
out_mcmc <- modelCountDataJAGS(count_data = sim_data, ni = ni., nt = nt.,
nb = nb., nc = nc.)
# Simulate movement data
sampleSize <- list(rep(20, nOriginSites), NULL)
captured <- rep("origin", sum(sampleSize[[1]]))
isTelemetry <- rep(TRUE:FALSE, c(sum(sampleSize[[1]]), sum(sampleSize[[2]])))
isProb <- rep(FALSE:TRUE, c(sum(sampleSize[[1]]), sum(sampleSize[[2]])))
# Telemetry data (released origin)
data1 <- simTelemetryData(psi = psiTrue,
sampleSize = sampleSize[[1]],
captured = "origin")
tt <- data1$targetAssignment
oa <- data1$originAssignment
# Estimate transition probabilities (psi)
est1 <- estTransition(targetAssignment = tt,
originAssignment = oa,
originNames = originNames,
targetNames = targetNames,
nSamples = 500, isGL = FALSE,
isTelemetry = isTelemetry,
isRaster = FALSE,
isProb = isProb,
captured = captured,
nSim = 10, verbose = 0)
# Reverse estimates
rev1 <- reverseTransition(psi = est1, originRelAbund = out_mcmc)
# Compare estimates of gamma, target relative abundance, and pi with calculation
# from true values
rev
rev1
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.